
In the event of a bioterror attack, rapidly estimating the
size and time of attack enables short-run forecasts of the
number of persons who will be symptomatic and require
medical care. We present a Bayesian approach to this
problem for use in real time and illustrate it with data from
a simulated anthrax attack. The method is simple enough
to be implemented in a spreadsheet. 

In the event of a bioterror attack, once the biologic agent
has been determined, rapidly estimating the size and

time of attack enables a forecast of the number of persons
who will be symptomatic and will require medical atten-
tion over the days (and perhaps weeks) after the attack.
Such a forecast could play a key role in determining the
response effort required, e.g., surge capacity planning at
hospitals, distributing vaccines or antimicrobial agents to
the population, as appropriate (1,2). We refer to early
knowledge of the size and time of an attack as situational
awareness.

We present a Bayesian approach to the real-time esti-
mation of the size and time of a bioterror attack, from case
report data, that is simple enough to implement in a
spreadsheet. The model assumes a single-source outbreak
caused by a bioterror attack at a particular point in time.
Although the model assumes that the infectious agent is
not contagious, the analysis still holds for contagious
agents until secondary infections have progressed to symp-
tomatic cases. Thus, our model should prove valuable
within the first incubation period after an attack has been
detected for a contagious agent and for longer time periods
in the event of a noncontagious agent. However, in the
event of multiple attacks at different points in time or an
attack with a rapidly progressing contagious agent, the
problem becomes more difficult and similar to the use of
back-calculation to recover the incidence of infection over
time from symptomatic case reporting (3).

The key assumptions in our analysis are that the biolog-
ic agent used has been identified and that the probability
distribution of the incubation time from infection through
symptoms is known. The incubation time distribution for
anthrax has been estimated by Brookmeyer and colleagues
on the basis of the Swerdlovsk outbreak (4); data describ-
ing the incubation distribution for smallpox are summa-
rized by Fenner et al. (5). Although smallpox is a
contagious infection, historically the incubation time from
infection through onset of symptoms is 7–17 days (5), a fact
that renders our model applicable to smallpox for roughly 2
weeks after an outbreak or 1 week after the first observed
cases (which is the shortest time until one would expect to
see cases resulting from second-generation infections). 

Likely ranges for the incubation times of other plausi-
ble bioterror agents are available at the Centers for Disease
Control and Prevention’s bioterror Web site (6), in addition
to sources in the literature. If the only information avail-
able regarding the incubation time for some agent is a like-
ly range, then one approach to creating a distribution for
use with our model is to assume that the range corresponds
to a probability coverage interval from a plausible incuba-
tion time distribution (such as the lognormal) and match
the parameters of the distribution accordingly.

We assume that the attack is detected through the
appearance of infected persons with symptoms, and that as
cases are identified, patient interview yields the approxi-
mate time at which symptoms appeared, a process which
avoids the need for explicit estimates of reporting delay.
Corrected as such, case reports provide two types of infor-
mation. The number of cases observed provides a lower
bound on the size of the attack. The specific timing of case
reports also conveys information that can be better under-
stood when filtered through the agent-specific incubation
time distribution.

The mathematical details of our approach are described
in the Appendix. We define the time origin as the instant
when the first case (and hence the attack) is detected
(though the time origin can be reassigned if case investi-
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gation     indicates that a subsequently reported case had
earlier symptoms). At the moment the attack is detected,
consistent with Bayesian principles (7), we presume a
prior robability distribution (henceforth, prior) governing
the size of the attack. For any given attack size n, the time
since the attack can be equated to the minimum of n inde-
pendent incubation times (since the attack is detected by
the first symptomatic case). As additional cases accumu-
late over time, the likelihood of observing cases at specif-
ic times is computed with standard methods. Given the
data observed, application of Bayes rule enables estima-
tion of the posterior distribution of both the size and time
of attack, from which summary statistics such as the
mean, standard deviation, and probability intervals of the
attack size and time are easily estimated. Short-run fore-
casts of future cases are also easily achieved within this
framework. We have developed an Excel spreadsheet
(Microsoft Corp., Redmond, WA) for implementing this
procedure.

As an example, we simulated an anthrax attack that
infects 100 persons using the incubation time distribution
for anthrax estimated from the Swerdlovsk outbreak (4).
We assumed a broad prior that assigns equal likelihoods to
attacks of different orders of magnitude from 1 to 10,000
(Appendix). Thus, attacks infecting 1–10, 11–100,
101–1,000, and 1,001–10,000 persons each have the same
25% probability of occurrence. With this prior, absent any
data other than the first case observed at time 0, the esti-
mated mean attack size is approximately 1,090.

Absent intervention, the 100 victims in this simulated
attack would appear as case-patients in accord with Figure
1 (open dots). Using the methods shown in the Appendix,
we report estimates of the attack size and the time of the
attack based on the cumulative number of cases observed at
the end of day 5 of the outbreak (where the time origin cor-
responds to the occurrence of the first observed case)
(Table). At the end of day 1, the estimated mean attack size
equals 850 (with a 95% probability interval ranging from
60 to 3,300). However, estimates approach the true value of
100 over time. Similarly, the estimates for the time of the
attack improve from 1.1 days before the first case (estimat-
ed after day 1 of the outbreak) to 1.8 days before the first
case is observed; the true time of attack is 1.8 days before
the first case observed in the simulated outbreak (Figure 1).

Figures 2 and 3 illustrate the posterior distributions of
the initial attack size and time of attack at the end of 5 days
(when a total of 23 cases have appeared). For example,
Figure 2 suggests that while the expected attack size, given
the data, equals 90, initial attacks as small as 50 or as large
as 150 are also plausible. Similarly, the time of the attack
could have been as recent as half a day before the first case
was observed, or as early as 3.5 days before the first case
appeared.

Given estimates of the initial size and time of attack,
one can forecast the occurrence of future cases over time,
as shown in Figure 1 (solid curve), where the forecast is
made on the basis of cases observed through the end of day
5 after the first case was observed. Such a short-range fore-
cast could be helpful in determining the resources required
to treat those infected in the attack, although once a wide-
spread response to the attack is mounted (e.g., distribution
of antimicrobial agents, in the case of anthrax), the fore-
casts lose their validity (8).

The key assumptions in our model are that the probabil-
ity distribution of the incubation time from infection
through development of symptoms is known and that
attack victims can report the times of symptom onset (so
we have not explicitly accounted for reporting delay). In
an actual bioterror attack, determining the incubation time
distribution itself might be necessary. For example, as
shown recently by Brookmeyer et al. (9), the incubation
time for anthrax is dose-dependent. Thus, exposure to
anthrax powders with much greater spore concentrations
than evident either in Swerdlovsk or the U.S. postal attacks
could lead to shorter incubation distributions. While we
are investigating statistical methods for this more general
problem (J.T. Wu, unpub. data), having a relatively simple
tool is still helpful when the probability distribution of
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Figure 1. Simulated actual (open dots) and forecasted (solid
curve) cumulative cases in an anthrax bioterror attack that infects
100 persons 1.8 days before the first symptomatic case is
observed. The cases were simulated from a lognormal distribution
with median 11 days and dispersion 2.04 days, which corresponds
to the incubation time estimated for anthrax based on the
Swerdlovsk outbreak (3). 

Table. Real-time estimates of size and time of attack, given the 
total cases observed in the simulated outbreaka 

Days past 
case no. 1 Total cases 

Estimated 
attack size 

Estimated day of 
attack (before  

case no. 1) 

1 5 850 1.1 
2 7 120 1.9 
3 15 160 1.4 
4 18 100 1.8 
5 23 90 1.8 
aSee Appendix for details. 



incubation times is presumed known and a single, point-
source outbreak is suspected. Our model might also prove
helpful for education and training exercises, in addition to
use during an actual bioterror attack.
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Appendix
We seek to estimate the initial attack size and the time of the

attack from observed cases of infection in real time. The case
report data are the (reporting-delay corrected) times at which
cases have been reported. We intend this model to be applied
once an attack has been discovered and assume that the agent is
noncontagious (or in the case of a contagious agent, that no sec-
ondary transmission has occurred) and that any interventions
mounted (such as vaccination or the administration of antimicro-
bial agents) have not yet had any effect on the early case report-
ing data. We define tj to be the time at which the jth case is
observed and define the origin as the time at which the first case
is observed (so t1 = 0). The unknown time from the attack until
the first case is observed is denoted by A > 0 (and thus the actu-
al date of the attack is equal to –A), while the unknown number
of persons infected in the attack is denoted by N >1. 

We treat A and N as random variables and assume that the
attack is detected through the reporting of the first case at time
t1 = 0. At the time the attack is detected, we quantify our beliefs
regarding the size of the attack by the prior probability distribu-
tion p(n) = Pr{N = n} . Let X denote the symptom-free incuba-
tion time for the attack agent, with probability density f(x) and
survivor function  
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Figure 2. Posterior probability density of the attack size based on
the data in Figure 1 observed through the end of day 5 after the
first case appeared. 

Figure 3. Posterior probability density of the time of attack based
on the data in Figure 1 observed through the end of day 5 after the
first case appeared. 
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If n persons were actually infected in the attack, then the time
from the attack until the first case is observed would equal the
minimum of n independent incubation times Xj, j = 1,2,...,n, thus

[1]
Consequently, the probability that a units of time would pass

before the attack would be detected by the first case equals 

from which the conditional probability density function of A
given an attack of size n follows as

[2]
Equation 2 implies that the joint prior distribution for the size

and time of attack when the first case is observed is equal to

[3]
Now, suppose that by time τ an additional k – 1 cases have

been observed at times tj for j = 2,3,...k. Conditional upon an
attack of size n having occurred at time –a, the joint probability
density of the data observed (that is, the likelihood function) is
given by

[4]
where t = t2, t3, t4,…, tk . Equation no. 4 is simply the condition-
al joint density of the first k – 1 order statistics observed from a
sample of size n – 1,given that a time units had passed from the
attack until the first case was observed at time 0, adjusted for the
fact that the period of observation extends to time τ (1).
Unconditioning the likelihood in equation no. 4 by the prior in
equation no. 3 yields the joint density 

[5]
and application of Bayes rule yields the joint posterior distribu-
tion of the size and time of attack as

[6]
The posterior distributions of A and N are then easily obtained

from equation no. 6 by summing (over n) or integrating (over a).

To obtain a short-run forecast of future cases, note that condi-
tional upon an attack of size n that occurred a time units before
detection, the expected number of cases that will occur by some
future time τ*  equals n[1–S(a+τ*)]. Unconditioning over equa-
tion no. 6 yields a simple short-run forecast of the number of
future cases expected given all of the data observed to date. An
even simpler approximation is obtained by substituting the poste-
rior expected values of N and A in the expression above for the
expected number of future cases; we used this approach in pro-
ducing the forecast shown in Figure 1.

In our examples, we assume that, a priori, the logarithm of the
attack size N is uniformly distributed between 0 and the loga-
rithm of 10,000, and we approximate this distribution in a spread-
sheet with 500 mass points equally spaced on the natural
logarithmic scale. This procedure assigns equal probabilities to
four different orders of magnitude, that is, attacks that infect
1–10, 11–100, 101–1,000, or 1,001–10,000 persons are each
assigned the same 25% probability of attack. The expected prior
attack size associated with this distribution approximately equals
9,999/ln(10,000) = 1,090.

Our examples also assume that the incubation time from
infection through onset of symptoms is distributed in accord with
a lognormal distribution with a median of 11 days and a disper-
sion of 2.04 days. This is the distribution fit to the data from the
anthrax outbreak in Swerdlovsk (2). For numerical computations,
this distribution is also approximated discretely within the
spreadsheet.

The joint prior distribution of N and A under the stated
assumptions is shown in Appendix Figure 1, available online at
http://www.cdc.gov/ncidod/eid/vol10no07/03-0632-appG1.htm.
Appendix Figure 2, available online at http://www.cdc.gov/nci-
dod/eid/vol10no07/03-0632-appG2.htm, displays the joint poste-
rior distribution for N and A after a total of 23 cases have been
observed by the end of 5 days after the first case was reported
(Figure 1). Results similar to those from Figures 1 to 3 and
Appendix Figure 2 are obtained if the attack size itself is assumed
to be uniformly distributed from 0 to 10,000 for this example, but
we believe the log-uniform prior is more sensible in that the pri-
mary a priori ignorance regards the order of magnitude of the
attack size. 
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Use of trade names is for identification only and does not imply
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