Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 12—December 2005
Letter

Vancomycin-resistant Enterococcus faecium Clone in Swine, Europe

On This Page
Tables
Article Metrics
14
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: The use of antimicrobial agents for growth promotion (AGP) in food-producing animals has been extensively debated because of the risk of establishing a reservoir of antimicrobial resistance genes or antimicrobial-resistant organisms of potential relevance for human health. This concern has motivated the progressive ban of the use of different AGP in the European Union, which began in 1997 with avoparcin and will end in 2006 (1). Worldwide trade of living animals for food production or breeding and of meat products enables multidrug-resistant pathogens to spread across national borders.

Intercontinental dissemination of antimicrobial-resistant bacteria associated with food animals has been described for particular clones such as Salmonella enterica Typhimurium DT104 or Escherichia coli O157:H7 and for transferable genetic elements such as the genomic island SG1 or the streptococcal plasmid pRE25 (2). Vancomycin-resistant enterococci (VRE) in European farms were initially associated with the intensive use of avoparcin; however, the persistence of VRE in food animal environments after years of avoparcin withdrawal indicates that coselection by further antimicrobial or other agents, increased fitness of strains, and mobile genetic elements cannot be ruled out (13).

A specific clone was recently detected among vancomycin-resistant E. faecium (VREF) isolated from different swine farms in Denmark and Switzerland and from a healthy Danish woman without antimicrobial drug exposure who ate pork, chicken, and beef (4,5). Since Portugal and Spain maintain commercial trade of food-producing swine (living or meat products) between them and with other European countries, including Denmark (http://www.dgv.min-agricultura.pt/dgv.nsf), we investigated a possible relationship among VREF swine fecal isolates from Portugal and Spain and compared these isolates with the Swiss/Danish clone. We studied 3 VREF from a Figueira da Foz slaughterhouse in central Portugal (1997–1998) and 3 VREF isolates from 3 Spanish slaughterhouses in Valencia, Lugo, and Murcia in eastern, northern, and southern Spain, respectively (1998–2000). These isolates were recovered in the course of previous surveillance studies (C. Novais/I. Herrero, unpub data). Antimicrobial susceptibility was tested for 13 antimicrobial agents by using the agar dilution method (6). Clonal relationships were analyzed by pulsed-field gel electrophoresis (PFGE) and characterization of pur-K alleles by amplification and further sequencing (6,7; http://efaecium.mlst.net). Species identification, genes coding for antimicrobial resistance genes or for putative virulence traits, and the backbone structure of Tn1546 were analyzed by polymerase chain reaction followed by sequencing when necessary (6,8). Broth and filter mating were performed by using E. faecium GE1 as recipient strain (6).

Following criteria published elsewhere (6), the VREF isolates studied were considered a single clone (0–4 bands difference by PFGE). Some vancomycin-susceptible E. faecium swine isolates (VSEF) from Spain and Switzerland showed an SmaI-PFGE pattern closely related to that of VREF isolates (data not shown [4]; ).

Representative VREF of each country harbored the allele 9 of the housekeeping gene purK, previously found among E. faecium isolates from swine and healthy persons (7). All VREF isolates were resistant to glycopeptides (vanA), erythromycin [erm(B)], and tetracycline. Two Spanish isolates were also highly resistant to streptomycin and kanamycin [aph()-IIIa] (Table). All VREF isolates tested carried a Tn1546 type D, previously found in isolates from food-producing animals (8). This element showed alterations in orf1 and a G-T point mutation in the position 8234 at vanX. Transfer of vancomycin resistance was detected for the Swiss (4), Spanish, and Portuguese isolates and was associated with erythromycin resistance in all cases. Tetracycline resistance was also transferable in the Spanish strains. No virulence traits were detected.

We describe the simultaneous occurrence of a VREF strain among swine in 4 distant European countries for at least a 4-year period. Tn1546 type D has been largely described in European swine isolates, which indicates stability of this particular type among the high diversity of Tn1546 described to date (8). The finding of a group of genetically closely related strains, which include both VSEF and VREF isolates and which harbor a particular purK allele previously associated with E. faecium swine strains, might mirror wide dissemination of a host-specific clone more prone than others to acquire and spread different antimicrobial resistance, as reported for human clinical E. faecium isolates (9). Since enterococci from swine are able to colonize in the human gut (5,7) and isolates harboring purK-9 can be recovered from hospitalized patients with severe infections (10), specific swine enterococcal strains might represent a risk for antimicrobial resistance spread in the clinical setting. Further analyses need to be performed to understand the role of international animal movements, animal feed, and colonized farmers in the spread of this particular strain and to assess whether this clone shows an increased fitness in the porcine intestine when compared to other E. faecium strains.

C. Novais was supported by a fellowship from Fundação para a Ciência e Tecnologia (SFRH/BD/3372/2000).

Top

Carla Novais*, Teresa M. Coque†, Patrick Boerlin‡, Inmaculada Herrero§, Miguel A. Moreno§, Lucas Dominguez§, and Luísa Peixe*Comments to Author 
Author affiliations: *REQUIMTE at Universidade do Porto, Porto, Portugal; †Hospital Universitario Ramón y Cajal, Madrid, Spain; ‡University of Guelph, Ontario, Canada; §Universidad Complutense de Madrid, Madrid, Spain

Top

References

  1. Phillips  I, Casewell  M, Cox  T, Groot  B, Friis  C, Jones  R, Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004;53(Suppl 1):2852 .DOIPubMedGoogle Scholar
  2. Teuber  M. Veterinary use and antibiotic resistance. Curr Opin Microbiol. 2001;4:4939 .DOIPubMedGoogle Scholar
  3. Johnsen  PJ, Østerhus  JI, Sletvold  H, Sorum  M, Kruse  H, Nielsen  K, Persistence of animal and human glycopeptide-resistant enterococci on two Norwegian poultry farms formerly exposed to avoparcin is associated with a widespread plasmid-mediated vanA element within a polyclonal Enterococcus faecium population. Appl Environ Microbiol. 2005;71:15968 .DOIPubMedGoogle Scholar
  4. Boerlin  P, Wissing  A, Aarestrup  F, Frey  J, Nicolet  J. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs. J Clin Microbiol. 2001;39:41935 .DOIPubMedGoogle Scholar
  5. Hammerum  A, Lester  C, Neimann  J, Porsbo  L, Olsen  K, Jensen  L, A vancomycin-resistant Enterococcus faecium isolate from a Danish healthy volunteer, detected 7 years after the ban of avoparcin, is possibly related to pig isolates. J Antimicrob Chemother. 2004;53(Suppl 3):5479 .DOIPubMedGoogle Scholar
  6. Novais  C, Coque  TM, Sousa  JC, Baquero  F, Peixe  L. Local genetic patterns within a vancomycin-resistant Enterococcus faecalis clone isolated in three hospitals in Portugal. Antimicrob Agents Chemother. 2004;48:36137 .DOIPubMedGoogle Scholar
  7. Homan  WL, Tribe  D, Poznanski  S, Li  M, Hogg  G, Spalburg  E, Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 2002;40:196371 .DOIPubMedGoogle Scholar
  8. Woodford  N, Adebiy  AMA, Palepou  MFI, Cookson  B. Diversity of VanA glycopeptide resistance elements in enterococci from humans and animals. Antimicrob Agents Chemother. 1998;42:5028.PubMedGoogle Scholar
  9. Willems  RJL, Top  J, van Santen  M, Robinson  A, Coque  TM, Baquero  F, Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis. 2005;11:8218.PubMedGoogle Scholar
  10. Coque  TM, Willems  RJ, Fortun  J, Top  J, Diz  S, Canton  R, Population structure of Enterococcus faecium causing bacteremia in a Spanish university hospital: setting the scene for a future increase in vancomycin resistance? Antimicrob Agents Chemother. 2005;49:2693700 .DOIPubMedGoogle Scholar

Top

Table

Top

Cite This Article

DOI: 10.3201/eid1112.050822

Related Links

Top

Table of Contents – Volume 11, Number 12—December 2005

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Luisa Peixe, REQUIMTE, Laboratório de Microbiologia. Faculdade de Farmácia,Universidade do Porto, Rua Aníbal Cunha, 4050-030 Porto, Portugal; fax: + 351-2-2003977

Send To

10000 character(s) remaining.

Top

Page created: February 02, 2012
Page updated: February 02, 2012
Page reviewed: February 02, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external