Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 11, Number 3—March 2005

Research

Rapid Identification of Emerging Pathogens: Coronavirus

Rangarajan Sampath*Comments to Author , Steven A. Hofstadler*, Lawrence B. Blyn*, Mark W. Eshoo*, Thomas A. Hall*, Christian Massire*, Harold M. Levene*, James C. Hannis*, Patina M. Harrell*, Benjamin Neuman†, Michael J. Buchmeier†, Yun Jiang*, Raymond Ranken*, Jared J. Drader*, Vivek Samant*, Richard H. Griffey*, John A. McNeil*, Stanley T. Crooke*, and David J. Ecker*
Author affiliations: *Ibis Therapeutics, Carlsbad, California, USA; †The Scripps Research Institute, La Jolla, California, USA

Main Article

Figure 1

Electrospray ionization Fourier transfer ion cyclotron resonance (ESI-FTICR) mass spectrum from the polymerase chain reaction (PCR) amplicons from the severe acute respiratory syndrome (SARS)-associated coronavirus obtained with the propynylated RNA-dependent RNA polymerase primer pairs. The electrospray ionization conditions separate the sense and antisense strands of the PCR products. Multiple charge states are observed across the m/z range shown. The inset shows an expanded view of the isotop

Figure 1. . Electrospray ionization Fourier transfer ion cyclotron resonance (ESI-FTICR) mass spectrum from the polymerase chain reaction (PCR) amplicons from the severe acute respiratory syndrome (SARS)-associated coronavirus obtained with the propynylated RNA-dependent RNA polymerase primer pairs. The electrospray ionization conditions separate the sense and antisense strands of the PCR products. Multiple charge states are observed across the m/z range shown. The inset shows an expanded view of the isotope envelope of the (M-27H+)27- species. As enumerated in Table 1, the derived molecular masses for the amplicon strands are 27298.518 (+ 0.03) Da and 27125.542 (+ 0.03) Da, corresponding to an unambiguous base composition of A27G19C14T28/ A28G14C19T27 for the double-stranded amplicon, the composition expected for the SARS isolate.

Main Article

TOP