
Effectively controlling infectious diseases requires
quantitative comparisons of quarantine, infection control
precautions, case identification and isolation, and immu-
nization interventions. We used contact network epidemiol-
ogy to predict the effect of various control policies for a
mildly contagious disease, such as severe acute respira-
tory syndrome, and a moderately contagious disease, such
as smallpox. The success of an intervention depends on
the transmissibility of the disease and the contact pattern
between persons within a community. The model predicts
that use of face masks and general vaccination will only
moderately affect the spread of mildly contagious diseases.
In contrast, quarantine and ring vaccination can prevent the
spread of a wide spectrum of diseases. Contact network
epidemiology can provide valuable quantitative input to
public health decisionmaking, even before a pathogen is
well characterized.

Public concern regarding emerging infectious diseases
is on the rise. The 21st century began with the emer-

gence or reemergence of zoonotic diseases like severe
acute respiratory syndrome (SARS) (1), avian influenza
(2), monkeypox infection (3), West Nile virus disease (4),
mad cow disease (5), anthrax due to bioterrorist attacks
(6), and unusual influenza epidemics (7). In addition to
these new threats, public health officials face a large num-
ber of disease outbreaks every year in hospitals, schools,
and other small communities. While development of vac-
cines and diagnostic tools proceeds at an unprecedented
pace, development of tools for determining optimal inter-
vention strategies lags behind.

In response to this problem, we have found that mathe-
matical models of disease transmission can be used to

evaluate and optimize control strategies. Such quantitative
predictions can be empirically tested through randomized
comparative trials, and mathematical models increasingly
contribute to public health decisions regarding policy and
intervention (8–13).

We use contact network epidemiology to compare
intervention strategies for airborne2 infectious diseases,
including emerging diseases such as SARS, for which epi-
demiologic data are limited. These methods are based on
explicit mathematical models of the heterogeneous pat-
terns of interpersonal contacts that underlie disease trans-
mission in a community, be it a hospital, school, or city
(12–21). This approach differs from fully mixed compart-
mental models that assume that each person can infect
every other person with equal probability (8). Some com-
partmental models have been modified to include popula-
tion heterogeneity and have provided insights into the
long-term effects of intervention strategies (8–11). For
communities with extensive heterogeneity in contact pat-
terns, however, network models more explicitly capture
patterns of disease transmission and thus enable more
accurate and detailed predictions of the effect of control
measures on the magnitude and distributions of outbreaks.

Methods
Contact network models capture and estimate interper-

sonal contacts that lead to disease transmission within a
community (22). Contacts can take place within house-
holds, schools, workplaces, hospitals, and other public
venues. Each person in a community is represented as a
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vertex in the network, and each contact between 2 people
is represented as an edge connecting the vertexes. The
number of edges emanating from a vertex is the degree of
that vertex. This quantity indicates the number of contacts
who potentially transmit disease to or acquire disease from
a person. The variation of degree across the entire network,
i.e., the degree distribution, is fundamental to determining
the probability for spread of disease through a network of
contacts. Given the degree distribution of the contact net-
work, one can analytically predict the fate of an outbreak.

Contact network epidemiology allows us to assess the
vulnerability of a population to an infectious disease on the
basis of the structure of the network (its degree distribu-
tion) and on the average transmissibility (T) of the disease
(12,13). T is the average probability that transmission will
occur from an infected person (vertex) to an uninfected
person. This parameter summarizes multiple aspects of
transmissibility, including the contact intensity between
persons, duration of infectiousness, and the host’s suscep-
tibility to the infectious pathogen (12,13).

Contact Network Parameter Estimation
We built an urban contact network model with 2,000

households with an average household size of 2.6 (5,154
persons) based on demographic information for the
Greater Vancouver Regional District, British Columbia,
Canada. We used publicly available data from sources such
as Statistics Canada to estimate the distribution of ages,
household sizes, school and classroom sizes, hospital
occupancy, workplaces, and public spaces (23–27).

Most of the edges in the network are undirected, mean-
ing that transmission may occur in either direction (black
edges in Figure 1). For example, 2 persons living in the
same household will have equal opportunities to infect
each other. The remaining edges are directed, meaning that
a person may infect another person but the converse is not
true (gray edges in Figure 1). For example, suppose person
A is healthy and has no reason to go to the hospital until he
or she is infected with SARS. At that point, person A will
likely come into contact with and potentially spread SARS
to caregivers at the hospital. In contrast, if a caregiver at
the hospital acquired SARS while person A remained
healthy in the community, then no opportunity would exist
for transmission in the opposite direction. To model the
directional flow of infected patients into a hospital, we
include directed edges from persons in the population at
large to caregivers in the hospital.

In an urban setting, not all encounters are equally like-
ly to lead to disease transmission. We capture this hetero-
geneity in 2 ways. First, in the simulated urban network,
the probability of a contact between 2 persons depends on
the location and nature of their overlapping daily activities.
For example, persons in the same household are connected

to each other with probability 1, while persons who
encounter each other in a public space are connected to
each other with a probability from 0.003 to 0.300. Second,
after these connections are determined, we assign a distinct
transmissibility, Tij, for each pair of connected persons i
and j, that depends on the nature of their contact. For a
given disease, the distribution of transmissibilities is based
on empiric estimates for the diversity in infectious periods
and the per day probability of transmission between per-
sons who come into contact with each other. For more
details, please refer to the online Appendix, available from
http://www.cdc.gov/ncidod/EID/vol11no08/04-0449_
app.htm.

Modeling Control Strategies
In any given network exists a critical transmissibility

value, Tc, which indicates whether a large-scale epidemic
is probable. Any disease with average transmissibility <Tc
cannot cause sustained transmission within a population
and will thus be limited to small outbreaks. Such diseases
die out because of the probabilistic nature of transmission
before the disease has a chance to spread to the population
at large. In this case, we can mathematically predict the
expected size of small outbreaks, s. Diseases with average
transmissibility >Tc will spark large-scale epidemics with
probability S, which can also be estimated. The value of Tc
depends on the contact patterns within a community.
Roughly speaking, when abundant opportunities exist for
transmission, disease will spread easily, and the epidemic
threshold will be low. The equations for s, S, and Tc, which
are entirely in terms of the degree distribution and average
transmissibility T, are presented in the online Appendix.

The epidemic potential of disease is commonly estimat-
ed by using the basic reproductive number R0, the number
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Figure 1. Schematic diagram of a directed network. Each black
vertex represents a member of the general population; gray ver-
texes represent healthcare workers.



of secondary infections arising from a single infection in a
relatively naïve population (8,28). This quantity is linearly
related to the transmissibility of the disease, i.e., R0 = γT,
where γ depends on the structure of the network (equations
1 and 8 in online Appendix). When T is at the epidemic
threshold (T = Tc), then R0 = 1. Public health interventions
aim to reduce the number of new infected cases, ideally
decreasing the effective reproductive number of the dis-
ease below the epidemic threshold, Reff<1.

The difference between average transmissibility T and
the basic reproductive ratio R0 is important. While both
have threshold values that distinguish epidemic from
nonepidemic scenarios (R0 = 1 and T = Tc), T is determined
by the transmission characteristics of the pathogen and the
nature of human interactions, but not the numbers of con-
tacts in a community, whereas R0 depends on all of these
factors, particularly on the numbers of interactions within
the community. For example, consider a single airborne
pathogen spreading through a hospital, where abundant
close contacts exist, and through a rural community, where
close contacts are rare. The per contact probabilities of
transmission (Tij) may be similar in these settings because
they are determined by the pathogenesis of the strain in the
host, while the numbers of contacts are different.
Therefore, the average transmissibility T will be similar in
the 2 locations, while R0 will be substantially higher in the
hospital than in the rural setting.

The heterogeneous spread of SARS worldwide sug-
gested context-dependent patterns of transmission with
relatively rapid spread through hospitals and relatively
slow spread through communities (29). A notable excep-
tion to this pattern, the large cluster of SARS cases outside
a healthcare setting in the Amoy Gardens apartment com-
plex in Hong Kong, seems to have spread through
aerosolization of virus-laden sewage rather than direct per-
son-to-person contact (30). When contact patterns within a
community are extremely heterogeneous, explicitly mod-
eling community structure and T makes more sense than
assuming a universal R0. We take this approach to evaluat-
ing disease control strategies in an urban setting (31).

A primary public health goal is to bring disease from a
value above an epidemic threshold to a value below the
threshold, thereby eliminating the threat of a large-scale
epidemic. This goal can be achieved through interventions
that directly affect the transmissibility of the pathogen (T)
or through interventions that modify patterns of interaction
so that the epidemic threshold (Tc) is increased. We call
these 2 forms of intervention transmission-reduction and
contact-reduction, respectively, and depict them graphical-
ly in Figure 2. The solid curves represent the predicted size
of an outbreak and the probability of an epidemic for an
entire spectrum of T from 0 to 1 in an urban setting. All air-
borne pathogens have a transmissibility value within this

range; 0 = no transmission, and 1 = every contact leads to
transmission. Thus, any disease can be mapped to a unique
value on the curve.

In our simulated urban contact network, the critical
transmissibility threshold is Tc = 0.048. An outbreak of dis-
ease with T = 0.245 will almost certainly spark an epidem-
ic in the absence of intervention (top circle in Figure 2).
This value of T is equivalent to an R0 = 5 for this contact
network and thus corresponds to a moderately infectious
disease like smallpox (32,33). A successful intervention
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Figure 2. Transmission- vs. contact-reduction intervention. A)
Transmission-reduction intervention: solid curves show the aver-
age size of an outbreak (left panel) and the probability of a large-
scale epidemic (right panel). The horizontal axes cover the
spectrum of disease transmissibility (from 0 to 1) such that a sin-
gle disease is associated with a unique value on either the left
curve (if T<Tc) or the right curve (if T>Tc). The epidemic threshold
Tc separates the 2 zones. For better visualization, we chose 2 dif-
ferent scales for horizontal axes of the 2 panels. Consider a dis-
ease with T = 0.245 (top black circle). A transmission-reduction
intervention causes the black circle to slide on a new position on
the curve. A successful intervention is the one that lowers T to a
value <Tc. B) Contact-reduction intervention: solid curves in the
top panel show the epidemiologic vulnerability of the original net-
work. Contact-reduction interventions alter the structure of the
contact network and shift the epidemic curves to the right (solid
curves in bottom panel). The 2 dashed vertical lines show the crit-
ical transmissibility threshold for the old (left) and new (right) net-
works. Consider the disease denoted by the black circle: the
contact-reduction intervention raised the epidemic threshold
above transmissibility of the disease and thereby eliminated the
possibility of an epidemic.



either reduces T so that it lies below Tc (Figure 2A) or mod-
ifies the structure of the network so that Tc rises above T
(Figure 2B). The first strategy can be achieved by interven-
tions that reduce the probability of transmission per contact,
such as face masks, gloves, gowns, handwashing, and other
infection control precautions that prevent the exchange of
respiratory droplets without eliminating contact.

The second strategy involves modifying the contact
network itself. Interventions such as quarantine and clos-
ing schools and other public places effectively eliminate
potential contacts (edges) between persons. Interventions
such as immunization and the prophylactic use of antibac-
terial or antiviral drugs are tantamount to removing per-
sons (vertexes) from the contact network and therefore
also alter the network structure. We mathematically assess
the effect of such strategies by deleting edges and vertexes
from the contact network and predicting the new probabil-
ity of an epidemic and expected distribution of cases with-
in the community.

Results
We evaluated a variety of commonly implemented pub-

lic health interventions by changing the contact patterns
within the network, transmissibility of the disease, or both.
For each strategy, we calculated several epidemiologic
quantities: 1) the epidemic threshold, Tc, which may be
raised by contact-reduction interventions, 2) the transmis-
sibility of the disease, T, which may be reduced by trans-
mission-reduction interventions, 3) if T<Tc, the expected
size of a small outbreak, s, 4) if T>Tc, the probability of a
large-scale epidemic, Sprob, and 5) if T>Tc, the expected
size of an epidemic, S, should one occur. Based on calcu-
lations of these quantities, Figures 3–5 report the effect of
various interventions applied to a moderately contagious
disease just above the epidemic threshold (left panel),
where we believe SARS to lie (34) and a moderately infec-
tious disease such as smallpox (right panel). Gray entries
correspond to unsuccessful interventions; white entries
indicate strategies that are predicted to successfully move
the pathogen below the epidemic threshold and thereby
prevent a large-scale epidemic.

Transmission Reduction
Although general use of face masks may have a moder-

ate effect, its success hinges on correct use and level of
compliance. For instance, face masks that are 75% effec-
tive will only prevent a large-scale epidemic of a SARS-
like disease if >60% of the general population complies
perfectly (Figure 3). If persons use face masks incorrectly
or only partially, this intervention will be less likely to pro-
tect persons and the population as a whole. For moderate-
ly contagious diseases like smallpox, face masks alone will
not protect large urban areas from an epidemic. Figure 3

also suggests that use of face masks by healthcare workers,
while important for personal protection, offers limited pro-
tection to the population and does not predictably preclude
an epidemic.

One of the factors that influences the transmissibility T
is the duration of infectiousness. The duration of effective
infectiousness may be shortened, but not eliminated, by
isolating persons immediately after diagnosis. Although
isolating an infected person will physically remove him
from the network, the person may already have had a
chance to infect others before being identified and isolat-
ed. For example, an infectious person who is isolated after
the second day of a 6-day infectious period will have had
2 days in which disease could be transmitted to close con-
tacts. Thus, isolation can be effective for diseases with low
transmissibility but only if case identification occurs early
in the infectious period. For such diseases, an isolation
strategy that on average reduces the infectious period by
50% will prevent a large-scale epidemic (Figure 4).
Isolation will not preclude an epidemic for a highly trans-
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Figure 3. Comparing the effect of face masks for the general pub-
lic and healthcare workers (HCWs). Mask efficiency is the percent
reduction in transmissibility to or from a person correctly using a
mask. Compliance is the fraction of the population adopting the
intervention. Results are for a mildly contagious disease with a
transmissibility T = 0.075 and a moderately contagious disease
with a transmissibility T = 0.245. The equivalent basic reproductive
number for these diseases are R0 = 1.545 and R0 = 5.047, respec-
tively. Without intervention, both of these diseases have T above
the epidemic threshold for the community (Tc = 0.048) and thus
may ignite a large-scale epidemic. The probabilities that such epi-
demics will occur (without intervention) are Sprob = 0.50 and Sprob =
0.97, respectively. Some interventions may not bring T below the
epidemic threshold and thus only reduce the probability of an epi-
demic (gray boxes), while others succeed in containing transmis-
sion to a small outbreak (white boxes). Gray boxes give the
probability of an epidemic, and white boxes give the expected size
of an outbreak. Outbreak size may not be an integer since s is an
average taken from all possible outbreaks in the community.



missible disease unless clinical and diagnostic tools can be
applied early and confidently, which may not be the case
for an emerging infectious disease.

Contact Reduction
Contacts between infected and susceptible persons can

be eliminated during an outbreak through measures such as
quarantine, closing public venues, and ring vaccination, or
they can be eliminated preventatively through general vac-
cination strategies. Figure 4 predicts that simultaneous
case-patient isolation and quarantine of close contacts sub-
stantially improves containment. For a mildly contagious
disease, an outbreak can be controlled with a combination
of isolation that reduces the infectious period by 25% and
quarantine that successfully sequesters 30% of all case-
patient contacts. Much more rigorous isolation and quaran-
tine are required for a highly contagious disease. Such
interventions require a strong surveillance infrastructure,
reliable rapid diagnostic tests, and social acceptance.

In Figure 6, we show that such predictions can readily
be translated into values of Reff. Interventions that bring a
population under the epidemic threshold are those that
decrease Reff below 1. We emphasize that the predictions in
Figures 4 and 6 are specific to the underlying model of
contact patterns in an urban setting and that, contrary to
common interpretations, Reff (or R0) is not a universal con-
stant but instead critically depends on structure of the host
community.

Vaccination
A general vaccination strategy is one in which a sub-

stantial proportion of the population is vaccinated at ran-
dom. The success of this measure depends on proportion
(coverage), vaccine efficacy, and disease transmissibility.
The availability of a vaccine, therefore, does not guarantee
prevention unless both delivery and vaccine-induced
immunity are sufficient. For example, Figure 5 shows that
a mildly contagious disease like SARS may be thwarted by
partial coverage (≈75%) with a moderately efficacious
vaccine (≈60% vaccine efficacy). Under this strategy, a
moderately contagious disease can become epidemic
unless a population receives 95% coverage with a 100%
efficacious vaccine.

Ring vaccination of close contacts, on the other hand, is
a very effective approach overall. This intervention, like
quarantine, involves both transmission and contact reduc-
tion. Identifying the index patient results in a reduced
infectious period. Subsequent identification and protection
of his or her contacts through vaccination further limits the
potential spread of the pathogen. Figure 5 considers the
effect of ring vaccination on the population as a function of
the effectiveness of patient isolation and the fraction of
contacts that are successfully immunized. Partial protec-
tion of contacts may stem from inadequate contact tracing
or an ineffective vaccine. For example, vaccinating 80% of
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Figure 4. Comparing the effect of isolation and quarantine.
Isolation alone reduces the infectious period by a specified per-
centage. Quarantine involves both isolation and sequestering a
fraction of all case contacts. See the Figure 3 caption for further
details.

Figure 5. Comparing general vaccination and ring vaccination
strategies. General vaccination protects a percentage of persons
chosen randomly from the population with an efficacy determined
by the vaccine itself. Ring vaccination involves isolating the patient
(and the associated reduction in the infectious period) followed by
targeted vaccination of contacts. The degree to which contacts are
successfully protected depends on the success of contact tracing
and the efficacy of the vaccine. See the Figure 3 caption for further
details.



close contacts with a 50% efficacious vaccine is equivalent
to vaccinating 40% of close contacts with a 100% effica-
cious vaccine. Ring vaccination can be a successful strate-
gy for a mildly contagious disease with even a moderate
surveillance infrastructure or a partially efficacious vac-
cine. However, ring vaccination requires more successful
case identification, contact tracing, and vaccination when
implemented against a highly contagious disease. Ring
vaccination is only applicable to diseases with relatively
long incubation periods that allow contacts to be identi-
fied, vaccinated, and develop a protective immune
response. Thus, this strategy is more appropriate for dis-
eases like smallpox (incubation period 12 days) than
SARS (incubation period 2–7 days).

Variation in Outbreak Size
The white entries in Figures 3–5 report the expected

(average) size of small outbreaks for diseases below the
epidemic threshold. Any particular outbreak, however,
may not be exactly equal to this average size. In the left
panel of Figure 7, we show the average and standard devi-
ation of outbreak sizes over the range of transmissibility
values below the epidemic threshold. For each value of T,
we estimate the standard deviation by using 1,000 simulat-
ed epidemics on the original urban network (without inter-
vention). For low T, outbreaks tend to be small and close
to the average outbreak size s. As T increases toward the
epidemic threshold, the distribution of outbreak sizes
widens substantially, and s becomes less informative.
Given this variability, public health strategies should be
based on bringing populations substantially under the epi-
demic threshold.

Sensitivity Analysis
Our mathematical predictions are based on a single

simulated urban network with 2,000 households with an
average of 2.6 people per household. To address the sensi-
tivity of the predictions to the particular pattern of contacts
in the network, we stochastically generated 100 urban net-
works of equal size and predicted the probability of an epi-
demic for the range of T above the epidemic threshold.
Since each of these 100 networks has a unique degree dis-
tribution, the value of the epidemic threshold varies. In
particular we find that the average epidemic threshold is
0.04822 with a 95% confidence interval of
0.04656–0.04988. Recall that the network used in the
analysis above has an epidemic threshold Tc=0.048. The
right panel of Figure 7 shows the mean probability of an
epidemic across these 100 networks with 95% confidence
intervals. The probabilities for the particular network that
we studied lie very close to the mean probabilities. The
narrow confidence intervals suggest that our predictions
are fairly robust to the particular architecture of the urban
network. We further consider the effect of network size on
these predictions in the online Appendix.

Discussion
Using contact network epidemiology, we evaluated var-

ious airborne infection control policies for a simulated
urban setting like Vancouver. This approach explicitly cap-
tures the heterogeneous patterns of interpersonal contacts
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Figure 6. Intervention projections in terms of Reff. This figure pres-
ents the results in the lower panel of Figure 4 expressed in terms
of effective reproductive number rather than the projected size of
an outbreak. If Reff<1 outbreaks will die out, while if Reff>1, epi-
demics may ensue. Note that the shading indicates epidemic
potential and coincides perfectly with the shading in Figure 4.

Figure 7. Left panel: variation of outbreak sizes as a function of
transmissibility. We generated 1,000 epidemics for each of 20 val-
ues of T from 0 to the epidemic threshold. The solid curve repre-
sents the mean of outbreak size (µ), the dashed curve represents
1 standard deviation above the mean (µ + σ), and the dotted line
at the bottom shows the minimum size of an outbreak, which is
always equal to 1, meaning that after the introduction of the first
infected case the disease did not spread further. Right panel: sen-
sitivity of epidemic probability to network stochasticity. We gener-
ated 100 different networks, each with 2,000 households. Because
of the stochastic nature of contact formation during network
generation, these 100 networks contain different numbers and
configurations of edges and therefore have different degree
distributions. The solid curve shows the mean probability of an
epidemic across the 100 networks for transmissibilities above the
epidemic threshold, and the dashed curves are 95% confidence
limits for the mean probability of an epidemic.



that lead to disease transmission and allows rapid mathe-
matical prediction of the probability and distribution of an
epidemic. This analysis does not depend on computation-
ally intensive simulations. Furthermore, the approach
allows one to quantitatively compare strategies that direct-
ly reduce the transmissibility of a pathogen or limit oppor-
tunities for a pathogen to spread. Although each strategy
has been considered on its own, these methods can easily
predict the effect of combined interventions for an entire
spectrum of airborne infectious diseases, including SARS,
smallpox, influenza, and meningococcal meningitis,
among others.

Although the qualitative results of this analysis are
applied to urban settings, the work is meant to be a proof
of concept rather than to provide specific quantitative rec-
ommendations for urban control of communicable dis-
eases such as SARS and smallpox. Until we have
developed contact network models for a wide range of
communities and assessed their generality, contact net-
work epidemiology will need to be applied on a case-by-
case basis. For example, hospitals can use these methods to
improve control of nosocomial airborne infections. To
start, each facility should model its particular network of
patient–healthcare worker interactions, then calculate the
effect of measures such as respiratory droplet precautions,
grouping patients in cohorts, modifications to healthcare
worker assignments, and vaccination (12).

The success of contact network epidemiology depends
not only on realistic models of contact patterns but also on
reliable estimates of the average transmissibility of the
pathogen, T. As a respiratory pathogen begins to spread
through a population, epidemiologists can rapidly identify
the mode and rate of disease transmission. These data can
provide critical input for intervention strategies.
Historically, the rate of disease transmission has been meas-
ured and reported in terms of the basic reproductive num-
ber R0, based on the doubling time of case counts in the
early phase of an outbreak or epidemic. The value of R0,
however, may vary substantially, depending on the popula-
tion in which it is measured. For example, recent estimates
of R0 for SARS ranged from 1.2 to 3.6 (34–36). In contrast,
T is not subject to the particular patterns of interaction with-
in a community and can be reliably estimated in diverse set-
tings. Measuring T is only slightly more involved than
measuring R0. For each case, one must measure not just the
number of secondary cases, but also the total number of
contacts of the case-patient during the infectious period and
then divide the first value by the second.

Just as enormous molecular and technological
resources are often mobilized to develop vaccines and
diagnostic tools for emerging infectious diseases of public
health importance, we should also harness the powerful

quantitative mathematical tools that help assess disease
interventions. When an airborne pathogen strikes, public
health officials should be able to make scientifically
grounded decisions about the competing medical, econom-
ic, and social implications following deployment of con-
trol measures. We illustrate that contact network
epidemiology can provide detailed and valuable insight
into the fate and control of an outbreak. Integrating these
tools into public health decision making should facilitate
more rational strategies to manage emerging diseases,
bioterrorist events, and pandemic influenza in situations in
which empiric data are not yet available to guide decision
making.
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