Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 5—May 2006
Research

Novel Swine Influenza Virus Subtype H3N1, United States

Porntippa Lekcharoensuk*1, Kelly Lager*, Ramesh Vemulapalli†, Mary Woodruff†, Amy L. Vincent*, and Jürgen Richt*Comments to Author 
Author affiliations: *US Department of Agriculture, Ames, Iowa, USA; †Purdue University, West Lafayette, Indiana, USA

Main Article

Figure 2

Alignment of deduced amino acid sequences within the hemagglutinin (HA) 1 region of HA genes of H3N2 swine influenza viruses (SIVs), H3N2 turkey isolates, and H3N1 SIVs. The amino acid sequence represents the consensus sequence, and the amino acid at position 1 is the first amino acid following the signal peptide (37). Dots represent amino acids similar to the consensus. Note that according to H3 structure (37), the residues representing the antigenic sites are underlined and the receptor bindin

Figure 2. Alignment of deduced amino acid sequences within the hemagglutinin (HA) 1 region of HA genes of H3N2 swine influenza viruses (SIVs), H3N2 turkey isolates, and H3N1 SIVs. The amino acid sequence represents the consensus sequence, and the amino acid at position 1 is the first amino acid following the signal peptide (37). Dots represent amino acids similar to the consensus. Note that according to H3 structure (37), the residues representing the antigenic sites are underlined and the receptor binding sites are in boldface. The alignment shows that PU243 and PU542 may have emerged from the H3N2 turkey isolates. The residues within the receptor-binding site are relatively conserved.

Main Article

References
  1. Webster  RG, Bean  WJ, Gorman  OT, Chambers  TM, Kawaoka  Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:15279.PubMedGoogle Scholar
  2. Roger  GN, Pritchette  TJ, Lane  JL, Paulson  JC. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor infection: selection of receptor specific variants. Virology. 1983;131:394408. DOIPubMedGoogle Scholar
  3. Rogers  GN, Paulson  JC, Daniels  RS, Skehel  JJ, Wilson  IA, Wiley  DC. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983;304:768. DOIPubMedGoogle Scholar
  4. Guan  Y, Shortridge  KF, Krauss  S, Li  PH, Kawaoka  Y, Webster  RG. Emergence of avian H1N1 influenza viruses in pigs in China. J Virol. 1996;70:80416.PubMedGoogle Scholar
  5. Karasin  AI, Anderson  GA, Olsen  CW. Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada. J Virol. 2000;74:93227. DOIPubMedGoogle Scholar
  6. Kida  H, Ito  T, Yasuda  J, Shimizu  Y, Itakura  C, Shortridge  KF, Potential for transmission of avian influenza viruses to pigs. J Gen Virol. 1994;75:21838. DOIPubMedGoogle Scholar
  7. Ito  T, Couceiro  JN, Kelm  S, Baum  LG, Krauss  S, Castrucci  MR, Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998;72:736773.PubMedGoogle Scholar
  8. Wilson  IA, Skehel  JJ, Wiley  DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981;289:36673. DOIPubMedGoogle Scholar
  9. Matrosovich  M, Tuzikov  A, Bovin  N, Gambaryan  A, Klimov  A, Castrucci  MR, Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000;74:850212. DOIPubMedGoogle Scholar
  10. Vines  A, Wells  K, Matrosovich  M, Castrucci  MR, Ito  T, Kawaoka  Y. The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol. 1998;72:762631.PubMedGoogle Scholar
  11. Choi  YK, Goyal  SM, Joo  HS. Prevalence of swine influenza virus subtypes on swine farms in the United States. Arch Virol. 2002;147:120920. DOIPubMedGoogle Scholar
  12. Shope  RE. Swine Influenza. III. Filtration experiments and etiology. J Exp Med. 1931;54:37380. DOIPubMedGoogle Scholar
  13. Karasin  AI, Schutten  MM, Cooper  LA, Smith  CB, Subbarao  K, Anderson  GA, Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977–1999: evidence for wholly human and reassortant virus genotypes. Virus Res. 2000;68:7185. DOIPubMedGoogle Scholar
  14. Zhou  NN, Senne  DA, Landgraf  JS, Swenson  SL, Erickson  G, Rossow  K, Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol. 1999;73:88516.PubMedGoogle Scholar
  15. Richt  JA, Lager  KM, Clouser  DF, Spackman  E, Suarez  DL, Yoon  KJ. Real-time reverse transcription–polymerase chain reaction assays for the detection and differentiation of North American swine influenza viruses. J Vet Diagn Invest. 2004;16:36773. DOIPubMedGoogle Scholar
  16. Webby  RJ, Swenson  SL, Krauss  SL, Gerrish  PJ, Goyal  SM, Webster  RG. Evolution of swine H3N2 influenza viruses in the United States. J Virol. 2000;74:824351. DOIPubMedGoogle Scholar
  17. Karasin  AI, Olsen  CW, Anderson  GA. Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana. J Clin Microbiol. 2000;38:24536.PubMedGoogle Scholar
  18. Karasin  AI, Landgraf  J, Swenson  S, Erickson  G, Goyal  S, Woodruff  M, Genetic characterization of H1N2 influenza A viruses isolated from pigs throughout the United States. J Clin Microbiol. 2002;40:10739. DOIPubMedGoogle Scholar
  19. Karasin  AI, West  K, Carman  S, Olsen  CW. Characterization of avian H3N3 and H1N1 influenza A viruses isolated from pigs in Canada. J Clin Microbiol. 2004;42:434954. DOIPubMedGoogle Scholar
  20. Choi  YK, Goyal  SM, Kang  SW, Farnham  MW, Joo  HS. Detection and subtyping of swine influenza H1N1, H1N2 and H3N2 viruses in clinical samples using two-multiplex RT-PCR assays. J Virol Methods. 2002;102:539. DOIPubMedGoogle Scholar
  21. Hoffmann  E, Stech  J, Guan  Y, Webster  RG, Perez  DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:227589. DOIPubMedGoogle Scholar
  22. Kumar  S, Tamura  K, Nei  M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:15063. DOIPubMedGoogle Scholar
  23. Choi  YK, Lee  JH, Erickson  G, Goyal  SM, Joo  HS, Webster  RG, H3N2 influenza virus transmission from swine to turkeys, United States. Emerg Infect Dis. 2004;10:215660.PubMedGoogle Scholar
  24. Richt  JA, Lager  KM, Janke  BH, Woods  RD, Webster  RG, Webby  RJ. Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States. J Clin Microbiol. 2003;41:3198205. DOIPubMedGoogle Scholar
  25. Palmer  DF, Coleman  MT, Dowdle  WR, Schild  GC. Advanced laboratory techniques for influenza diagnosis. Immunology series no. 6. Washington: US Department of Health, Education, and Welfare. 1975. p. 51–2.
  26. Andreyev  VG, Wesley  RD, Mengeling  WL, Vorwald  AC, Lager  KM. Genetic variation and phylogenetic relationships of 22 porcine reproductive and respiratory syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame 5. Arch Virol. 1997;142:9931001. DOIPubMedGoogle Scholar
  27. Stemke  GW, Phan  R, Young  TF, Ross  RF. Differentiation of Mycoplasma hyopneumoniae, M flocculare, and M hyorhinis on the basis of amplification of a 16S rRNA gene sequence. Am J Vet Res. 1994;55:814.PubMedGoogle Scholar
  28. Cooper  L, Olsen  C, Xu  X. Molecular characterization of human influenza A viruses bearing swine-like hemagglutinin genes. Virus Evolution Workshop; 1999 Oct 21–24: Ardmore, Oklahoma.
  29. Kaverin  NV, Rudneva  IA, Ilyushina  NA, Lipatov  AS, Krauss  S, Webster  RG. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol. 2004;78:2409. DOIPubMedGoogle Scholar
  30. Skehel  JJ, Wiley  DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:53169. DOIPubMedGoogle Scholar
  31. Wright  SM, Kawaoka  Y, Sharp  GB, Senne  DA, Webster  RG. Interspecies transmission and reassortment of influenza A viruses in pigs and turkeys in the United States. Am J Epidemiol. 1992;136:48897.PubMedGoogle Scholar
  32. Andral  B, Toquin  D, Madec  F, Aymard  M, Gourreau  JM, Kaiser  C, Disease in turkeys associated with H1N1 influenza virus following an outbreak of the disease in pigs. Vet Rec. 1985;116:6178. DOIPubMedGoogle Scholar
  33. Ficken  MD, Guy  JS, Gonder  E. An outbreak of influenza (H1N1) in turkey breeder hens. Avian Dis. 1989;33:3704. DOIPubMedGoogle Scholar
  34. Hinshaw  VS, Webster  RG, Bean  WJ, Downie  J, Senne  DA. Swine influenza-like viruses in turkeys potential source of virus for humans? Science. 1983;220:2068. DOIPubMedGoogle Scholar
  35. Suarez  DL, Woolcock  PR, Bermudez  AJ, Senne  DA. Isolation from turkey breeder hens of a reassortant H1N2 influenza virus with swine, human, and avian lineage genes. Avian Dis. 2002;46:11121. DOIPubMedGoogle Scholar
  36. Tsai  CP, Pan  MJ. New H1N2 and H3N1 influenza viruses in Taiwanese pig herds. Vet Rec. 2003;153:408.PubMedGoogle Scholar
  37. Reid  AH, Fanning  TG, Janczewski  TA, Taubenberger  JK. Characterization of the 1918 “Spanish” influenza virus neuraminidase gene. Proc Natl Acad Sci U S A. 2000;97:678590. DOIPubMedGoogle Scholar
  38. Lindstrom  S, Sugita  S, Endo  A, Ishida  M, Huang  P, Xi  SH, Evolutionary characterization of recent human H3N2 influenza A isolates from Japan and China: novel changes in the receptor binding domain. Arch Virol. 1996;141:134955. DOIPubMedGoogle Scholar
  39. Baigent  SJ, McCauley  JW. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res. 2001;79:17785. DOIPubMedGoogle Scholar
  40. Kaverin  NV, Gambaryan  AS, Bovin  NV, Rudneva  IA, Shilov  AA, Khodova  OM, Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology. 1998;244:31521. DOIPubMedGoogle Scholar
  41. Kobasa  D, Wells  K, Kawaoka  Y. Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine. J Virol. 2001;75:1177380. DOIPubMedGoogle Scholar
  42. Alexandra  DJ. A review of avian influenza in different bird species. Vet Microbiol. 2000;74:313. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Kasetsart University, Bangkok, Thailand

Page created: January 12, 2012
Page updated: January 12, 2012
Page reviewed: January 12, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external