
Because fatal infections with highly pathogenic avian 
infl uenza A (HPAI) virus subtype H5N1 have been reported 
in birds of prey, we sought to determine detailed information 
about the birds’ susceptibility and protection after vaccina-
tion. Ten falcons vaccinated with an inactivated infl uenza 
virus (H5N2) vaccine seroconverted. We then challenged 5 
vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). 
All vaccinated birds survived; all unvaccinated birds died 
within 5 days. For the nonvaccinated birds, histopathologic 
examination showed tissue degeneration and necrosis, im-
munohistochemical techniques showed infl uenza virus anti-
gen in affected tissues, and these birds shed high levels of 
infectious virus from the oropharynx and cloaca. Vaccinated 
birds showed no infl uenza virus antigen in tissues and shed 
virus at lower titers from the oropharynx only. Vaccination 
could protect these valuable birds and, through reduced vi-
rus shedding, reduce risk for transmission to other avian 
species and humans.

Highly pathogenic avian infl uenza A (HPAI) virus pos-
es a major threat to poultry but is also of great concern 

for other avian species and humans. In particular, HPAI 
(H5N1) of Asian lineage is known for its potential to be 
transmitted to mammals, including humans. Susceptibility 
to this virus and the possible role as vectors or reservoirs 
vary greatly between different wild bird and poultry spe-
cies (1,2). Gallinaceous poultry are considered to be highly 

susceptible, whereas waterfowl may show variable clinical 
signs depending on the strain of infecting virus. Birds of 
prey are at increased risk for infection with HPAI virus be-
cause they regularly feed on avian carcasses and diseased 
avian prey (3,4). Many species are migratory or cover an 
extensive territory and may spread the virus within or be-
tween countries. In falconry, birds of prey are also regularly 
kept in captivity and come in close contact with humans. In 
this respect, birds of prey represent a bridging species and 
may pose a risk of transmitting the virus to humans or to 
other captive avian species, including poultry.

In the past, HPAI rarely occurred in birds of prey and 
only in isolated cases. In 2000, Manvell et al. (5) isolated 
infl uenza virus (H7N3) from a Peregrine falcon (Falco per-
egrinus) kept as a falconry bird in the United Arab Emir-
ates. In the same year, during an HPAI (H7N7) outbreak 
in poultry in Italy, an avian infl uenza virus of H7 subtype 
was isolated from a Saker falcon (Falco cherrug) (6). Both 
birds showed depression and died, but other pathogens 
(e.g., Pasteurella sp.) were detected as well.

During recent infl uenza (H5N1) outbreaks, increas-
ing numbers of birds of prey were reported to be infected. 
HPAI virus (H5N1) was isolated from Hodgson’s hawk 
eagles (Spizaetus nipalensis) confi scated at an airport (7) 
and from a Saker falcon (8) in Saudi Arabia. During the 
infl uenza (H5N1) outbreak among wild birds in Germany, 
36 (10.5%) birds with positive infl uenza (H5N1) results 
were birds of prey, represented by common buzzards (Bu-
teo buteo), peregrines (F. peregrinus), and kestrels (Falco 
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tinnunculus), as well as European eagle owls (Bubo bubo), 
which were found dead (9). Diseased free-ranging birds 
of prey infected with infl uenza (H5N1) were also reported 
by several other countries. In March 2007, infl uenza virus 
(H5N1) was isolated from falcons in Kuwait (www.poul-
trymed.com).

Although it is obvious that birds of prey can be infected 
with HPAI viruses, the pathogenic potential in these species 
remains unclear. Free-ranging birds frequently suffer from 
other concurrent diseases or starvation, and captive birds 
undergo stressful periods due to rearing conditions or train-
ing. These situations may immunocompromise the birds, 
leading to increased vulnerability. However, their potential 
to shed virus after infection, which is important for virus 
transmission, potentially also to humans, remains unclear. 
Clinical signs, pathologic and histopathologic alterations, 
and tissue tropism of the virus after a controlled infection 
have not been investigated. This knowledge is needed for 
a better understanding of HPAI in nondomestic birds, es-
pecially for subtype H5N1, which poses a higher risk to 
humans than do other avian infl uenza viruses (10–12).

Collections of birds of prey are of high commercial 
and species conservation value; therefore, protection from 
HPAI is important. Vaccination might reduce the risk for 
virus transmission by reducing virus shedding, as has been 
shown in chickens (13,14). Ultimately, an interruption of 
virus transmission between and within avian collections 
would be invaluable for controlling disease, especially in 
populations of rare species as exemplifi ed by many bird of 
prey species (15).

Vaccination with commercially available inactivated 
vaccines based on avian infl uenza virus subtype H5 can con-
fer clinical protection and reduce virus shedding after infec-
tion (16). Implementation of DIVA (Differentiating Infected 
from Vaccinated Animals) strategies have been attempted 
(17). Response to vaccination of zoo birds with an AI H5N2 
(18) or H5N9 (19) subtype inactivated vaccine varied con-
siderably among species with respect to peak titers and 
persistence of specifi c antibodies. Some species mounted 
antibodies after the fi rst round of vaccination; others had de-
tectable titers only after a second dose or never produced de-
tectable antibody levels (pelicans [Pelicanus spp.] and owls 
[B. bubo, Tyto alba]) (20). The authors demonstrated peak 
hemagglutination inhibition (HI) titers of 2,048 within 2–4 
weeks after booster vaccination in bar-headed geese (Anser 
indicus); most other species yielded titers of only 64 to 512 
during the same time. Several species, such as the Egyptian 
goose (Alopochen aegyptiacus) and peafowl (Acryllium vul-
turinum), still had antibody titers of 32 to 128 by 6 months 
after vaccination, while spur-winged geese (Plectropterus 
gambensis) failed to show titers after that time. Such a varia-
tion between species was also observed after vaccination of 
different waterfowl and wader species (21). 

No detailed information is available about antibody 
responses and protection after vaccination against HPAI in 
falcons. Therefore, we analyzed the susceptibility of fal-
cons to an infl uenza (H5N1) fi eld virus under controlled 
conditions and evaluated the effi cacy of vaccination of fal-
cons with an inactivated infl uenza (H5N2) vaccine and its 
effect on epidemiologically relevant parameters. The trial 
was approved under government registration numbers G 
0072/06 and LVL M-V/TSD/7221.3-1.1-45/05 (with ex-
pansion LVL M-V/TSD/7221.3-1.1-37/06). 

Materials and Methods

Animals
Fifteen juvenile female Gyr-Saker (F. rusticolus × 

F. cherrug) hybrid falcons were obtained from 1 breeder. 
The birds received an intensive health evaluation, which 
included a general examination, radiographs, laparoscopy, 
blood cell count, blood chemistry analysis, and parasito-
logic examination; all results were within normal limits. 
The falcons were perched according to standard falconry 
techniques during the vaccination trial (22). For challenge 
infection, the animals were kept individually in stainless 
steel cages located in negatively pressurized isolation 
rooms within Biosafety Level 3 facilities. Seven 1-day-old 
chicks obtained from a disease-free stock, were provided 
to each bird each day as feed. Unconsumed chicks were 
removed to measure the daily feed intake of each bird.

Vaccination
Ten falcons were vaccinated (nos. 1–5 intramuscularly 

and nos. 6–10 subcutaneously) with 0.5 mL (hemaggluti-
nating titer >16) of infl uenza (H5N2) inactivated vaccine 
(Intervet, Unterschleissheim, Germany) based on strain 
A/duck/Potsdam/1402/86; they were revaccinated with the 
same dose and by the same route 4 weeks later. As a nega-
tive control, 5 nonvaccinated falcons were kept with the 
vaccinated birds.

Before the fi rst vaccination and in weekly intervals un-
til 8 weeks after initial vaccination, individual blood sam-
ples were collected from the metatarsalis plantaris super-
fi cialis medialis vein directly into a serum tube (Sarstedt, 
Nümbrecht, Germany) by using a 0.7-mm × 30-mm needle 
(Sterican, Luer-Lock, Braun Melsungen, Germany). The 
serum was separated and tested for H5-specifi c antibodies 
by the HI test, with low pathogenic avian infl uenza sub-
type H5N2 (A/duck/Potsdam/619/85) as antigen accord-
ing to standardized methods (23). A cloacal swab was also 
examined for infl uenza A virus RNA by using real-time 
reverse transcription–PCR (RT-PCR) targeting an M gene 
fragment to exclude a concurrent infection (24).
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Challenge Infection
Five months after the initial vaccination, 5 falcons ran-

domly selected from the 10 vaccinated birds (nos. 1, 2, 5, 
8, 9) and 5 nonvaccinated control birds (nos. 11–15) were 
challenged with 106.0 50% egg infectious dose (EID50) of 
infl uenza strain A/Cygnus cygnus/Germany/R65/2006, a 
highly pathogenic H5N1 strain that was isolated from a 
dead whooper swan (Cygnus cygnus) during an outbreak 
of HPAI virus (H5N1) among wild birds in Germany (25). 
Each bird received 1 mL cell culture medium by the oculo-
oronasal route. The falcons were observed daily for 11 days 
after challenge. At the end of the trial, surviving birds were 
humanely killed. A serum sample was obtained by using 
the above-described method just before challenge and, for 
surviving birds, on the last day of the trial. The serum was 
used for the detection of antibodies against H5 by the HI 
test (see above) by using 2 different antigens (challenge 
and vaccine strain). Before challenge and at days 1, 2, 4, 
7, and 11 after challenge, an oropharyngeal and a cloacal 
swab were taken for a semiquantitative detection of avian 
infl uenza virus–specifi c RNA by using a real-time RT-PCR 
targeting an M gene fragment as recommended in the Di-
agnostic Manual for Avian Infl uenza issued by the Euro-
pean Commission (26) and described by Spackman et al. 
(24). The method has been improved by using an internal 
control in parallel in a duplex reaction (27). In addition, 
virus isolation in embryonated chicken eggs was attempted 
as described by Werner et al. (28). Isolated viruses were 
characterized as HPAI virus (H5N1) by subtype-specifi c 
real-time RT-PCRs (26) and by a pathotype-specifi c real-
time RT-PCR (29).

Gross, Histopathologic, and Immunohistochemical 
Examinations

Necropsies were performed immediately after death. 
Samples of nasal cavity, trachea, lung, heart, cerebellum, 
cerebrum, spinal cord, proventriculus, small and large in-

testine, liver, pancreas, spleen, skin, and kidney were col-
lected and either snap frozen or formalin fi xed (48 h) and 
processed for paraffi n embedding according to standard-
ized procedures. For histopathologic examination, paraf-
fi n wax sections (3 μm) were dewaxed and stained with 
hematoxylin and eosin. Immunohistochemical examination 
for infl uenza virus A nucleoprotein (NP) was performed 
according to Klopfl eisch et al. (30). Briefl y, dewaxed sec-
tions were incubated with a rabbit anti-NP serum (1:500). 
As secondary antibody, biotinylated goat anti-rabbit IgG1 
(Vector, Burlingame, CA, USA) was applied. By means 
of the avidin-biotin-peroxidase complex method, a bright 
red signal was produced. Positive and negative control 
tissues of chickens that had been infected experimentally 
with HPAI virus (H5N1) were included. Tissues from the 
central nervous system (CNS), small intestine, pancreas, 
trachea, and lung were used for real-time RT-PCR and for 
virus isolation.

Results

Immune Response
During the entire trial, control birds remained negative 

for avian infl uenza virus H5-specifi c antibodies. In addi-
tion, infl uenza A virus RNA was not detected in any of the 
cloacal swabs. No adverse clinical effects were detected as 
a result of application of the 2 vaccine doses.

Nine of the 10 vaccinated birds mounted homologous 
H5-specifi c antibodies 3 weeks after the fi rst vaccination; 
titers increased signifi cantly after the booster vaccination 
(Table 1). The remaining bird (no. 5) showed a detectable 
titer of 8 only 6 weeks after initial vaccination (2 weeks 
after booster vaccination); HI titer for this bird remained 
at 8. Differences in titer development according to route 
of vaccination were not detected (Table 1). Clinical signs 
(i.e., decreased food intake or worsening general condi-
tion) were not observed in any of the vaccinated birds. 
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Table 1. Titers (log2) of hemagglutination-inhibiting antibodies against homologous influenza H5 antigen in 10 Gyr-Saker hybrid falcons 
after vaccination* 

Titer at 0–8 weeks after vaccination Falcon no., 
vaccination route 0† 1 2 3 4‡ 5 6 7 8
1, IM 0 0 0 2 4 5 6 6 7
2, IM 0 0 0 2 3 4 6 8 9
3, IM 0 0 0 2 5 6 7 8 8
4, IM 0 0 0 3 4 4 6 7 6
5, IM  0 0 0 0 0 0 3 3 3
6, SC 0 0 0 3 4 5 6 8 7
7, SC 0 0 0 2 3 4 6 8 7
8, SC  0 0 0 3 3 4 5 6 7
9, SC 0 0 0 2 4 6 6 7 7
10, SC 0 0 0 3 4 5 6 6 6
*Vaccination with an inactivated influenza (H5N2) vaccine (strain A/duck/Potsdam/1402/86) at a dose of 0.5 mL containing >4 log2 hemagglutinating units. 
IM, intramuscular; SC, subcutaneous. 
†Time of first vaccination. 
‡Time of booster vaccination. 
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HI titers against the heterologous challenge strain A/Cyg-
nus cygnus/Germany/R65/2006 at the time of challenge 
are shown in Figure 1. The nonvaccinated birds remained     
seronegative.

Gross, Histopathologic, and Immunohistochemical 
Response to Challenge

All nonvaccinated birds died after challenge with HPAI 
virus (H5N1). The fi rst falcon died on day 3 postchallenge, 
3 died on day 4, and the rest died at day 5. Of these, 4 had 
reduced food intake starting from the day of challenge, and 
3 had a slightly bloody tracheal exudate detectable the day 
after exposure. One bird died with no clinical signs.

All vaccinated birds survived. For 2, food intake was 
slightly reduced 1 day after challenge. No other vaccinated 
bird exhibited clinical signs. By 11 days after challenge, 
the titers of the vaccinated birds increased to 2,048 against 
the antigen used for vaccination and 1,024 against the chal-
lenge strain (Figure 1).

Necropsy showed multifocal acute hemorrhagic ne-
crosis in the pancreas of 3 birds that died spontaneously 
and moderate to severe splenic hyperplasia in 3 birds. His-
topathologic examination of the cerebellum, cerebrum, 
spinal cord, pancreas, spleen, and kidney of the nonvacci-
nated birds showed multifocal acute cellular degeneration 
and necrosis associated with minimal to mild infi ltration 
of few heterophils and detection of HPAI virus antigen 
(Figure 2). Furthermore, antigen was present in the nasal 
cavity, trachea, bronchial epithelium, and gastrointestinal 
tract but not in the liver and skin. None of the euthanized 
vaccinated birds exhibited any gross or histologic lesions 
or presence of antigen in any of the tissues.

Virus Excretion after Challenge
In the nonvaccinated falcons, after challenge infection 

viral RNA was detectable in all oropharyngeal swabs. Vi-
rus was also isolated from the pooled oropharyngeal swabs 
of these birds taken on the same days (Figure 3; Table 2). 
At day 1 postchallenge, viral RNA was detected in the clo-
acal swabs of 3 birds, although virus isolation failed. From 
day 2 postchallenge, all falcons demonstrated the presence 
of viral RNA and infectious virus in cloacal swabs (Figure 
3; Table 2).

In the vaccinated falcons, 1 day after challenge viral 
RNA was detectable in all oropharyngeal swabs. At day 
2 postchallenge, 1 falcon became negative for viral RNA, 
and at days 7 and 11, only 1 bird remained positive for viral 
RNA (Figure 3; Table 2). Virus isolation from a pool of all 
oropharyngeal swabs of all 5 vaccinated birds taken from 
day 1 postchallenge demonstrated a virus titer of 4.4 log10 
EID50/mL at day 1 postchallenge and 1.2 log10 EID50/mL 
at day 2 postchallenge. From day 4 on, virus could no lon-
ger be isolated from the pooled oropharyngeal swabs. Viral 

RNA was only occasionally detected in cloacal swabs and 
completely absent in 1 bird (Figure 3, Table 2). Virus could 
not be isolated from any of the pools of the cloacal swabs.

Virus in Tissues
In the nonvaccinated falcons, high loads of viral RNA 

were detected in the CNS, duodenum, pancreas, trachea, and 
lung of all control birds that died after challenge (Table 3). 
Virus isolation from these samples was not attempted.
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Figure 1. Titers (log2) of hemagglutination-inhibiting antibodies 
of 5 vaccinated Gyr-Saker hybrid falcons before and 11 days 
after challenge with 106.0 50% egg infectious doses of the highly 
pathogenic avian infl uenza strain A/Cygnus cygnus/Germany/
R65/06 (H5N1), tested against antigen of the challenge virus 
and the low pathogenicity avian infl uenza vaccine strain A/duck/
Potsdam/1402/86 (H5N2). Open circle, individual outlier.

Figure 2. Immunohistochemical demonstration of infl uenza A virus 
antigen (red, see arrows) in numerous splenic macrophages of a 
falcon after challenge with 106.0 50% egg infectious doses of the 
highly pathogenic avian infl uenza strain A/Cygnus cygnus/Germany/
R65/06 (H5N1). Avidin-biotin-peroxidase complex method. Bar = 
25 μm.
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In the vaccinated falcons, low to moderate loads of 
viral RNA were demonstrated in the brain and trachea of 
3 birds that were euthanized on day 11 postchallenge, in 
the lung of 2 birds, in the duodenum of 1 bird, and in the 
pancreas of 1 bird. However, virus was isolated from the 
trachea of only 2 birds and from the lung of 1 (Table 3). 
The viral RNA load was as much as 6 log10 lower than that 
of nonvaccinated animals.

Discussion
Our study is the fi rst, to our knowledge, to demonstrate 

that falcons are highly susceptible to HPAI virus (H5N1) 

as exemplifi ed by strain A/Cygnus cygnus/Germany/
R65/2006; all nonvaccinated birds died within 5 days after 
challenge. Clinical signs were mild and indicated only by 
a reduced food intake, which is not considered very obvi-
ous because falcons typically do not eat every day. These 
signs will not be seen in free-ranging birds and may be 
overlooked in captive animals. However, under natural 
conditions, more pronounced clinical signs may develop 
because stress situations and concurrent diseases are more 
likely than in captivity. Considering virus replication in the 
CNS, as demonstrated by immunohistochemical examina-
tion, CNS disturbances such as ataxia and disorientation 
might have ensued, although this is diffi cult to verify when 
birds are not allowed to fl y.

The slightly bloody exudate from the trachea, noted for 
3 birds at day 1 postchallenge, may pass unnoticed under 
fi eld conditions. On the basis of the inconspicuous clinical 
signs, precisely defi ning the length of the incubation period 
is diffi cult. Gross lesions noted at necropsy were only mild 
and restricted to the pancreas and, thus, may be overlooked 
during routine necropsy when infl uenza is not suspected.  
The striking alterations of the pancreas are important as 
they were found macroscopically in 3 of the 5 birds and 
histopathologically in all 5 birds that died. Such lesions 
have also been described in mute (C. olor) and whooper 
swans (C. cygnus) (31), in passerines and budgerigars (32), 
and in emus and geese (33). The systemic virus distribution 
parallels that noted in water fowl during the 2006 outbreak 
on the Baltic Sea coast (31). Nevertheless, carnivorous 
birds, including buzzards, affected during an outbreak in 
Germany in 2006 displayed mainly a severe infection of 
the CNS without systemic virus distribution (unpub. data). 
The lack of antigen detection in the vaccinated falcons at 
day 11 postchallenge parallels the minimal virus shedding 
of the vaccinated falcons. Nevertheless, infection of cells at 
the site of inoculation can only be excluded by immunohis-
tochemical examination of vaccinated animals during the 
fi rst days after challenge.

All nonvaccinated falcons shed virus from the oro-
pharynx and cloaca until death. Oropharyngeal shedding 
peaked at day 1 postchallenge, which might be related to 
reisolation of inoculum, and decreased toward day 4 post-
challenge. The peak of cloacal excretion was at day 2 post-
challenge, as reported for chickens (14). These fi ndings 
demonstrate that after infection with infl uenza A (H5N1) of 
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Figure 3. Detection of viral RNA by real-time reverse transcription–
PCR (RT-PCR) from oropharyngeal (A) and cloacal (B) swabs of 
5 vaccinated and 5 nonvaccinated falcons after challenge with 
106.0 50% egg infectious doses of the highly pathogenic avian 
infl uenza virus strain A/Cygnus cygnus/Germany/R65/06 (H5N1). 
Y axis shows cycle-of-threshold (Ct) values of real-time RT-PCRs 
detecting an M gene fragment in individual swab samples of each 
animal. Asterisks represent extreme values; open circles show 
individual outliers; black bars within boxes indicate medians. 

Table 2. Excretion of infectious highly pathogenic avian influenza virus (H5N1) in vaccinated and control falcons after challenge
Days postchallenge† 

Vaccination status Excretion route* 0 1 2 4 7   11
Vaccinated Oropharyngeal <0.5 4.4 1.2 <0.5 <0.5 <0.5
Nonvaccinated Oropharyngeal <0.5 5.4 4.4 2.0 No data No data 
Vaccinated Cloacal <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Nonvaccinated Cloacal <0.5 <0.5 3.0 2.7 No data No data 
*Pooled samples of all birds in the group were examined. 
†Data represent log10 of 50% egg infectious dose per mL. 
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Asian origin, oropharyngeal swabs may be superior to cloa-
cal swabs for diagnosing infection under fi eld conditions. 
Duration of virus excretion before death was very short. 
Therefore, falcons may not play a major role in spreading 
the pathogen within or between countries, although this 
possibility cannot be excluded. Moreover, infected birds, 
like these falcons, may not be able to migrate long dis-
tances. However, because they shed a considerable amount 
of virus for a short time concomitant with virtual absence 
of overt clinical signs, captive infected falcons may pose a 
substantial risk for humans and other birds of high commer-
cial and species conservation value. Therefore, measures to 
reduce this risk are of great importance, especially because 
depopulation of such birds is not a well-accepted option.

Vaccination of poultry, at least in experimental set-
tings, can reduce virus shedding signifi cantly after chal-
lenge, depending on the amount of antigen in the vaccine 
and the antigenic relationship between vaccine and virulent 
fi eld virus (13,14,34,35). This study shows that vaccination 
is also an option in falcons. It is safe; no adverse clinical 
reactions were observed. High titers of specifi c HI antibod-
ies were induced in most vaccinated animals and persisted 
for at least 5 months, which indicates that biannual revac-
cination may suffi ce. However, as in chickens, sterile im-
munity could not be induced as shown by continuous detec-
tion of virus excretion, particularly from the oropharynx, 
in vaccinated falcons after challenge infection. However, 
virus excretion was drastically reduced in vaccinated birds 
compared with nonvaccinated birds and could be detected 
only by sensitive real-time RT-PCR. With respect to the 
marked differences of virus excretion between vaccinated 
and nonvaccinated falcons, we note that a difference of ap-
proximately 3.3 cycle-of-threshold values corresponds to 
1 log10 of viral nucleic acid copies (36). Figure 3A shows 

that in oropharyngeal swabs from nonvaccinated falcons, 
up to 3–4 log10 more viral RNA copies are present than in 
swabs from vaccinated falcons. The failure to isolate chal-
lenge virus from excretions of vaccinated falcons raises the 
question of the epidemiologic importance of the presence 
of viral RNA in oropharyngeal swabs (13,14). Therefore, 
vaccination is considered to be an important tool to prevent 
further major outbreaks (34). Additionally, the bird-to-
human infection route of HPAI seems to require a high 
amount of excreted virus as well as close contact (37), 
which seems much more diffi cult to achieve with vacci-
nated birds. Although residual infectious virus persisted in 
organs of a few vaccinated birds until day 11 postchallenge, 
whether viral loads are suffi cient for effi cient transmission 
remains unclear. Because no viral RNA could be detected 
in the oropharyngeal swabs of 2 of these birds, this, how-
ever, appears to be unlikely.

In conclusion, we have demonstrated that falcons are 
highly susceptible to HPAI (H5N1) but can be protected 
from clinical disease and death by vaccination with a heter-
ologous inactivated vaccine administered intramuscularly 
or subcutaneously. Virus shedding was grossly reduced 
after vaccination, thereby decreasing risk for further virus 
transmission to other avian species as well as to humans. 
However, use of vaccine will require the establishment of 
an appropriate surveillance program that includes use of se-
rologic testing, PCR, and sentinel birds.
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Table 3. Viral RNA in tissues of 5 vaccinated and 5 nonvaccinated falcons* 
RNA in tissue, ct value† 

Falcon no.,vaccination route CNS Duodenum Pancreas Trachea Lung
Vaccinated
 1, IM 36.12‡ >40.00 38.84‡ >40.00 >40.00
 2, IM 38.65‡ >40.00 >40.00 >40.00 >40.00
 5, IM 34.22‡ 36.14‡ >40.00 33.44‡§ 36.94‡
 8, SC >40.00 IH >40.00 38.71‡ 32.85‡§

9, SC >40.00 IH IH 29.01§ IH
Nonvaccinated
 11 18.22 25.84 19.70 19.09 20.75
 12 23.79 23.37 14.67 19.07 18.95
 13 12.85 26.22 20.13 19.82 16.95
 14 11.52 21.66 17.14 16.70 15.55
 15 14.13 16.31 19.91 14.61 18.04
*Viral RNA detected by real-time reverse transcription–PCR (RT-PCR) in vaccinated falcons euthanized 11 days postchallenge and in nonvaccinated 
falcons that died after challenge infection with 106.0 50% egg infectious doses of highly pathogenic avian influenza virus strain A/Cygnus 
cygnus/Germany/R65/06 (H5N1). Ct, cycle of threshold; CNS, central nervous system; IM, intramuscular; SC, subcutaneous; IH, inhibited (samples 
extracted twice with the QIAGEN [Hilden, Germany] Viral RNA kit or Trizol [Invitrogen, Carlsbad, CA, USA]). 
†Real-time RT-PCR results are presented as ct values. Ct values >40 are scored as negative.  
‡Virus isolation attempted in embryonated chicken eggs. 
§Virus was isolated from individual tissue sample. 
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