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We compared PCR amplifi cation of 9 enterohemor-
rhagic Escherichia coli virulence factors among 40 isolates 
(21 O/H antigenicity classes) with DNA hybridization. Both 
methods showed 100% of the chromosomal and phage 
genes: eae, stx, and stx2. PCR did not detect 4%–20% of 
hybridizable plasmid genes: hlyA, katP, espP, toxB, open 
reading frame (ORF) 1, and ORF2.

Enterohemorrhagic Escherichia coli (EHEC) patho-
genicity is usually linked to a Shiga toxin (1,2) and 

virulence factors, including adhesins, toxins, invasins, 
protein secretion systems, iron uptake systems, and sev-
eral unidentifi ed functions (3,4), which are unrelated to 
strain phylogeny. In many laboratories, sorbitol-MacCon-
key medium is commonly used to screen for the slow sor-
bitol fermentation phenotype of the most common Shiga 
toxin–containing strain: O157:H7 (5), but this process 
does not address the pathogenic potential of the remaining 
sorbitol-positive E. coli. These organisms can be detected 
by immunologic methods or PCR evaluation of virulence 
factors. PCR is the most useful method for virulence fac-
tor detection, and others have made convincing arguments 
for its use in characterizing the virulence factor patterns of 
potential pathogens (6,7).

Variation in virulence factor targets and use of differ-
ent PCR primers contribute to variable results in detect-
ing the most common virulence factors: stx1, stx2, eae, and 
hlyA (or ehxA). Variation in amplifi cation success is likely 
to increase because more virulence factor variants are cer-
tain to emerge as more EHEC and Shiga toxin–producing 
E. coli (STEC) strains are identifi ed. This study addresses 
the potential for a broad and well-characterized set of con-
trol strains relative to virulence factor amplifi cation and 
confi rmed by Southern hybridization.

The Study
We used PCR amplifi cation and Southern blot hy-

bridization to detect 9 virulence factors among 40 EHEC 
type-strains from the STEC Center, National Food Safety 
and Toxicology Center, Michigan State University (East 
Lansing, MI, USA). The virulence factor targets were the 
following: 1 chromosomal (eae [8]), 2 phage (stx1 and 2), 
and 6 plasmid (open reading frame [ORF] 1, ORF2 of pO-
SAK1 [1,2]; espP [9], hlyA [4,10], katP [11], and tox B 
[12] of pO157) (Table). DNA-DNA hybridization probes 
were made from virulence factors amplifi ed from O157:H7 
EDL933 genomic DNA.

PCR amplifi cation was carried out with PCR prim-
ers (20 pmol/L each per 50 μL reaction) (Integrated DNA 
Technologies, Coralville, IA, USA) (Table) and 1 μL ge-
nomic DNA (extracted from overnight Luria-Bertani broth 
cultures according to PureGene DNA isolation kit instruc-
tions [Gentra Systems, Minneapolis, MN, USA] and dis-
solved in 50 μL 10 mmol/L Tris, pH 8.3) in a PCR cocktail 
containing 1× PCR buffer, 1.5 mmol/L MgCl2, 1 U Vent 
exo(–) polymerase from New England BioLabs (Beverly, 
MA, USA), and 200 μmol/L each dATP, dGTP, dTTP, and 
dCTP. The mix was incubated for 30 cycles of 94°C, 40 s; 
annealing (for temperatures, see Table), 45 s; 72°C, 60 s, 
and a fi nal 10-min extension at 72°C. Amplifi cation prod-
ucts were confi rmed by DNA sequencing.

32P-labeled DNA probes were made from 2 μg PCR 
amplicons (purifi ed by Montage PCR Cleanup Spin Col-
umn (Milipore Corp., Burlington, MA, USA). The DNA 
was denatured at 94°C, 40 sec; annealed (temperatures in 
Table) with 50 pmol/L of the appropriate PCR primers, 45 
s extended for 2 h at 72°C. The 1× buffer contained the 
following: 1.5 mmol/L MgCl2; 0.4 mmol/L each dATP, 
dGTP, dTTP; 2.0 μL 3,000 Ci/mmol α-32P-dCTP (MP 
Bioscience, Buxton, UK); and 1.25 U Taq polymerase in 
a 50 μL fi nal volume. Unincorporated 32P-nucleotide was 
removed by Sephadex G-50 in Tris-EDTA, 1% sodium 
dodecyl sulfate (SDS).

Bacteria (800 μL overnight cultures) were transferred 
to Hybond-N+ nitrocellulose membrane (Amersham Bio-
sciences UK Ltd, Buckinghamshire, UK) by dot-blot vac-
uum fi ltration apparatus (Schleicher and Schuell, Keene, 
NH, USA). Lysis and binding of genomic DNA fi xation 
were carried out by exposure to lysis solution (1.5 mol/L 
NaCl, 0.5 mol/L NaOH) twice for 5 min each, and twice 
with neutralization solution (1 mol/L Tris-Cl, pH 7.4; 1.5 
mol/L NaCl) for 5 min each. The fi lter was then submerged 
in 2× SSC with gentle agitation, air dried, and the DNA UV 
(254 nm) cross-linked at 120,000J/cm2 (CL-1000 cross-
linker, Fisher Biotech, Pittsburgh, PA, USA).

Probe hybridization was carried out in rotating hy-
bridization bottles (Fisher Scientifi c Isotemp hybridiza-
tion oven, Fisher Biotech) in 20 mL 6× SSC, 1% SDS at *Idaho State University, Pocatello, Idaho, USA
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68°C. Membranes were washed twice, for 1 min, in room 
temperature 2× SSC, 0.1% SDS, and twice at 45°C for 1 
h in 1× SSC, 1% SDS. Hybridized membranes were ex-
posed overnight with a phospho-imaging screen (Bio-Rad, 
Hercules, CA, USA) and visualized with a Personal Mo-
lecular Imager FX (Bio-Rad). The 3 chromosomal targets 
(stx1, stx2, and eae) were detected with 100% effi ciency 
by both PCR and hybridization (no. positive by PCR/no. 
positive by hybridization): 21/21 stxI, 19/19 stxII, and 
37/37 eae. Plasmid-associated genes, however, were de-
tected with less effi ciency relative to hybridization: katP: 
15/17 (88%), hlyA: 26/27 (96%), espP: 19/23 (83%), toxB: 
13/16 (81%), and both ORF1 and ORF2: 4/5 (80%) (online 
Appendix Table, available from http://www.cdc.gov/EID/
content/13/8/1253-appT.htm).

Seventy-fi ve percent (30/40) of the pathogenic E. coli 
strains tested contained at least 1 stx gene, 23% (9/40) were 
positive for both stx1 and stx2. The most common gene de-
tected was intimin (eae), which was positive by both PCR 
and hybridization in 37/40 (93%) of the strains. While eae 
is strongly correlated with Shiga toxin, the adherence phe-
notype conveyed may be suffi cient to cause a pathogenic 
state because 4 of the clinical isolates investigated con-
tained only the eae gene.

Six plasmid virulence factor genes of pO157 and pO-
SAK1were targeted. Thirty-one (78%) of the 40 pathogenic 
strains tested were positive for at least 1 (by hybridization, 

PCR, or both) of the 4 genes, toxB, katP, hlyA, espP, which 
are usually carried on the archetypal pO157 plasmid: 11/31 
(35%) retained all 4, 4/31(13%) carried three, 9/31 (29%) 
carried 2, and 5/31 (16%) carried only 1 (the sole PCR-
positive/hybridization-negative isolate [espP in ED-31] 
was presumed to result from a nonspecifi c amplifi cation).

Five EHEC strains (13%) hybridized to both ORF1 
and ORF2 (from pOSAK1) (1,4), but only 4 were amplifi -
able. These same 4 also contained eae and at least 1 Shiga 
toxin gene (the 1 that failed to amplify [E851/71] lacked 
both stx1 and stx2).

Conclusions
The current accepted standard for EHEC identifi cation 

is amplifi cation of stx1, stx2, eae, and hlyA by PCR. How-
ever, this technology is generally only available at large 
hospital or state health laboratories. Hybridization is supe-
rior to culture screening methods and largely complimen-
tary to PCR, but has a potentially broader epidemiologic 
application since it is unaffected by minor sequence varia-
tions that can completely inhibit PCR.

Only 3% of the 360 virulence factor hybridizations 
made in this study did not amplify. PCR failure is ex-
pected with its relatively higher sensitivity to single base 
primer-hybrid mismatch compared to whole amplicon hy-
bridization. Notably, however, all 12 variations detected 
were among plasmid-associated virulence factors: 95% 

Table. Virulence factor targets and primers, including nucleotide sequences, reference, and PCR conditions* 
PCR conditions Primer

name Nucleotide sequence (5′→3′) Target (bp) Ref. Denature Anneal Extension
STX1U GTAACATCGCTCTTGCCACA 
STX1D CGCTTTGCTGATTTTTCACA 

Stx1 gene (204) This
study 

95°C, 60 s 53.7°C, 60 s 72°C, 240 s 

STX2U GTTCCGGAATGCAAATCAGT 
STX2D CGGCGTCATCGTATACACAG 

Stx2 gene (206) This
study 

95°C, 60 s 53.7°C, 60 s 72°C, 240 s 

eae-1 ACGTTGCAGCATGGGTAACTC 
eae-2 GATCGGCAACAGTTTCACCTG 

Intimin (818) (8) 95°C, 60 s 57.1°C, 60 s 72°C, 240 s 

ToxBF TGGCCTTGCGCTCTATAAGAACCT 
ToxBR ACCACGCCGTGAGAATAATGTCCA 

ToxB (823) This
study 

95°C, 60 s 60°C, 60 s 72°C, 240 s 

HlyA1F GGTGCAGCAGAAAAAGTTGTAG 
HlyA1R TCTCGCCTGATAGTGTTTGGTA 

HlyA (1551) (13) 95°C, 60 s 55.5°C,60 s 72°C, 240 s 

EspPF CGGCAGAGTATCATCAAGAGC 
EspPR CATTAAATGGAGTTATGCGTC 

EspP (397) This
study 

95°C, 60 s 55.5°C, 60 s 72°C, 240 s 

KatPF TTTAAAACGCTGGGATTTGC 
KatPR CTCCTGAGAGGCGTCAGTTC 

KatP (1174) This
study 

95°C,60 s 52.0°C, 60 s 72°C, 240 s 

MalBU GACCTCGGTTTAGTTCACAGA 
MalBDn AGCGCGTAGGACTGAAACACCATA 

MalB promoter 
(414)

This 
study 

95°C, 60 s 55.8°C, 60 s 72°C, 240 s 

ORF1F TTTTTCAAAGCAAATGATGTGG 
ORF1R GGCGTAGCTAGGTTGAAATTATG 

ORF 1 
pOSAK1 (385) 

This 
study 

95°C, 60 s 49.8°C, 60 s 72°C, 240 s 

ORF2F CAA CCTAGCTACGCCACCAT 
ORF2R CATCAGGCGGAAATACCACT 

ORF 2 
pOSAK1 (869) 

This 
study 

95°C, 60 s 54.3°C, 60 s 72°C, 240 s 

EAF1 CAGGGTAAAAGAAAGATGATAA 
EAF2 TATGGGGACCATGTATTATCA 

Eaf (397) (14) 95°C, 60 s 49.8°C, 60 s 72°C, 240 s 

BFP1 GATTGAATCTGCAATGGC 
BFP2 GGATTACTGTCCTCACATAT 

Bfp (597) (15) 95°C, 60 s 51.6°C, 60 s 72°C, 240 s 

*Ref., reference; ORF, open reading frame. 
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(228/240) of the plasmid hybridizable targets were ampli-
fi ed, compared to 100% (120/120) of the hybridizable chro-
mosomal targets.

Although we detected the variable presence of genes 
ostensibly associated with 2 plasmids (pO157 and pO-
SAK1) and the bacterial chromosome, we did not attempt 
to verify either plasmid or chromosomal locations for any 
of the amplicons or DNA:DNA hybrids. While all viru-
lence factor targets summarized in this study are subject to 
change there have been reports of any of the putative chro-
mosomal or plasmid virulence factor targets in this study 
being found elsewhere.

Prager et al. (7) recently reported, using PCR alone, 
a wide variety of 25 virulence factor combinations among 
266 pathogenic E. coli isolates representing 81 serotypes. 
Such diversity speaks directly to the need to accurately as-
sess virulence factor presence to evaluate epidemiologic 
and clinical correlations. A similar 5% failure of the plas-
mid-associated virulence factor amplifi cations could have 
implications in such virulence factor correlations. Over-
all, however, these results are very similar to those of this 
study of prospective control strains. The use of a single 
control, such as EDL 933, will inherently bias PCR detec-
tion schemes since a failure of amplifi cation in a test will 
be read as the absence of virulence factor element because 
it was amplifi able in the control.

If amplifi cation failure is a measure of template varia-
tion, we fi nd a much greater variability among plasmid-
associated virulence factors. Although pO157 has been 
reported in most O157 H7 strains (13), our study demon-
strates a high variability in the putative virulence factor 
content of pO157 as well as a highly variable content of 
pO157-associated virulence factors among the O157 iso-
lates screened. Finally, pO157-associated virulence factors 
were detected among all but 4 of the 20 E. coli serotypes 
examined.
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