
The resurgence of severe invasive group A strepto-
coccal infections in the 1980s is a typical example of the 
reemergence of an infectious disease. We found that this 
resurgence is a consequence of the diversifi cation of partic-
ular strains of the bacteria. Among these strains is a highly 
virulent subclone of serotype M1T1 that has exhibited un-
usual epidemiologic features and virulence, unlike all other 
streptococcal strains. This clonal strain, commonly isolat-
ed from both noninvasive and invasive infection cases, is 
most frequently associated with severe invasive diseases. 
Because of its unusual prevalence, global spread, and in-
creased virulence, we investigated the unique features that 
likely confer its unusual properties. In doing so, we found 
that the increased virulence of this clonal strain can be at-
tributed to its diversifi cation through phage mobilization and 
its ability to sense and adapt to different host environments; 
accordingly, the fi ttest members of this diverse bacterial 
community are selected to survive and invade host tissue.

Group A streptococci (GAS or Streptococcus pyogenes) 
are strictly human pathogens that normally colonize 

the throat or skin without causing disease. Members of this 
species are differentiated into >100 types on the basis of 
immunogenic differences in their surface M proteins and 
polymorphisms in the emm gene (1). The range of GAS 
diseases is broad and includes both localized and systemic 
infections that can cause acute or chronic illnesses (Table 
1 in online Technical Appendix, available from www.cdc.
gov/EID/content/14/10/1511-Techapp.pdf). In most cases, 
these bacteria cause pharyngitis (sore throat), tonsillitis, 

or skin infections such as impetigo/pyoderma. At times, 
however, the bacteria gain access to normally sterile sites 
and cause invasive disease. Depending on complex host–
pathogen interactions, invasive GAS infections can cause 
either severe shock and multiple organ failure or nonsevere 
systemic disease, e.g., mild bacteremia and cellulitis (2,3). 
Likewise, invasive infections of soft tissues can be severe, 
e.g., necrotizing fasciitis (NF), or nonsevere, e.g., cellulitis 
or erysipelas (4). Whereas host genetic susceptibility plays 
a key role in modulating disease manifestation, variations 
in bacterial virulence properties contribute to infection 
severity.

Despite reports that particular serotypes or emm types 
are more commonly associated than others with particu-
lar disease manifestations, serotypic designation does not 
always refl ect the pathogenic potential of a given strain. 
As we discuss below, serotype diversifi cation can convert 
relatively avirulent serotypes to highly virulent ones. Dis-
section of molecular and genetic events leading to such 
diversifi cation provides insight into how the changes in 
pathogenesis and host–pathogen interactions can lead to 
the resurgence of a severe infectious disease.

Resurgence of Severe Invasive 
Streptococcal Diseases and Emergence 
of Highly Virulent GAS Strains

In the 19th century, GAS infections were associated 
with severe and frequent epidemics of invasive and often 
fatal illnesses, including a pandemic of scarlet fever in the 
United States and Great Britain (5). Invasive GAS infec-
tions with severe manifestations continued through the 
1920s (5). The severity of these illnesses then declined no-
tably until the early 1980s, when a statistically signifi cant 
simultaneous recrudescence of the severe and fatal forms of 
invasive GAS infections occurred in different parts of the 
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industrialized world (6,7). Accordingly, in 1993 a working 
group developed the case defi nition for streptococcal tox-
ic-shock syndrome (STSS) as hypotension accompanied 
by multiple organ failure, indicated by 2 of the following 
signs: renal impairment, coagulopathy, liver involvement, 
adult respiratory distress syndrome, a generalized rash, and 
soft tissue necrosis (8). A modifi ed defi nition of STSS was 
later adopted to focus on the host immune-mediated severe 
systemic disease associated with invasive infections, mani-
fested by hypotension and multiple organ failure, exclud-
ing skin rash, soft-tissue necrosis, and gangrene (2). Simi-
larly, NF was defi ned by the histopathologic identifi cation 
of necrosis of superfi cial fascia and a polymorphonuclear 
infi ltrate and edema of the reticular dermis, subcutaneous 
fat, and superfi cial fascia (9,10). The speed and rigor by 
which invasive GAS infections spread in the host, some-
times causing severe damage to the fascia and muscles, 
prompted its designation as the “fl esh-eating disease.”

Epidemiologic studies showed that the resurgence of 
severe invasive GAS infection was not limited to sporadic 
cases; rather, it represented a global spread, ushering in a 
new pandemic, similar to that reported in the earlier part of 
the 20th century. An important feature of this latest pan-
demic is its association with a distinct epidemiologic shift 
in GAS serotypes. Although many GAS serotypes are ca-
pable of causing severe diseases, a few were more frequent-
ly isolated from patients with severe cases, e.g., M1, M3, 
M18, and M28 strains (Table 2 in online Technical Appen-
dix). However, whether those serotypes cause more severe 
disease because of their hypervirulence or because they 
were also the most prevalently isolated strains in the com-
munity at that time was not clear (11,12). These possibili-
ties are not mutually exclusive, but in fact may be related. 
We believe that the unique features of the newly emerged 
subclones of GAS serotypes, in particular the M1T1 clonal 
strain, evolved as a result of diversifi cation of the bacteria 
and acquisition of new genes that improved their fi tness to 
infect humans. This, together with host-imposed pressure, 
resulted in the selection of hypervirulent mutants of this 
strain associated with an ability to cause severe forms of 
the invasive infection in susceptible persons.

Features of the Newly Emerged 
Hypervirulent Global M1T1 Strain

Whereas most GAS serotypes traditionally exhibit 
cyclic epidemiologic patterns, appearing and disappearing 
from the community at different times (13), the M1T1 sub-
clone has persisted globally for more than a quarter of a cen-
tury as the most frequently isolated serotype from patients 
with invasive and noninvasive cases. Advanced molecular 
and genomic tools showed a great deal of diversity among 
GAS strains belonging to the same serotype, and the M1 
serotype is no exception. The clonality of the reemerged 

M1T1 strain was fi rst described by Cleary et al. (14) and 
later confi rmed by others by the use of different molecular 
methods (Table 3 in online Technical Appendix), which 
confi rmed that the M1T1 clone differs from its ancestral 
M1 clone in several aspects. We will present evidence that 
those differences have indeed contributed to the stark dif-
ference in epidemiologic and virulence properties between 
2 strains belonging to the same serotype.

Together with the Ontario Streptococcal Study Group 
and the Centers for Disease Control and Prevention, our 
laboratory launched one of the earliest and most compre-
hensive prospective studies of invasive GAS pathogenesis 
in Ontario (8), where active surveillance of invasive GAS 
cases took place during 1992–2002 (4,9). M1T1 isolates re-
covered from patients with noninvasive as well as invasive 
cases, of varying severity, were extensively analyzed at the 
molecular level and shown to be clonal regardless of case 
severity (3). This clonal M1T1 strain possesses the emm1.0 
allele of the M1 gene (3) and is one of the opacity factor–
negative GAS serotypes. This strain differs in its virulence 
and genomic content from other less virulent M1 strains, 
represented by strain M1 SF370, the fi rst fully sequenced 
GAS strain (15).

Several events appear to have contributed to the di-
versifi cation of the M1 GAS serotype, leading to the emer-
gence of the M1T1 global strain. Specifi cally, diversifi -
cation through the loss and/or acquisition of phages that 
took away certain genes and introduced new ones into the 
M1 serotype is a major contributor to the emergence of 
this strain. This phenomenon is certainly not unique to the 
M1T1 strain, but is also seen in the M3T3 and M18 strains 
(16,17), which co-emerged with the M1T1 clonal strain in 
the 1980s.

Contribution of Prophages to 
Emergence of Global M1T1 Strain

In 1996, Cleary et al. found that the globally dissemi-
nated M1T1 differs from its closely related M1 subtypes 
by 70 kb of phage DNA (18). Ensuing studies from our 
group, in which we conducted global genomic compari-
son of the M1T1 clones and the closely related M1 SF370 
strain, demonstrated that most of the genetic differences 
(≈5% divergence) were accounted for by phage or phage-
like sequences. After assembling these distinct sequences, 
we identifi ed 2 novel prophages that were introduced into 
the M1T1 global strain (19). One prophage (SPhinX) car-
ries the speA2 gene, which encodes the potent superantigen 
SpeA; the other (PhiRamid) carries the sda1 gene, which 
encodes the most potent streptococcal nuclease identifi ed 
thus far (19,20). The introduction of these phages into the 
M1T1 clonal strain was later confi rmed by the complete 
genome sequence of a clinical M1T1 isolate, MGAS5005 
(21).
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The M1T1 prophages exhibit considerable genetic mo-
saicism, and the sequence analysis of the 2 novel M1T1 
phages demonstrates that these bacterial viruses continu-
ously exchange functional modules by various genetic 
mechanisms, including different modes of recombination 
(19). We believe that exchange between the lysis and ly-
sogenic conversion modules of GAS prophages has led to 
the swapping of virulence genes (toxins) among phages 
(19). We also believe that this process is facilitated by a 
highly conserved gene, paratox (prx), commonly found 
between the toxin gene and phage attachment site. Con-
served prx sequences on 1 side of the toxin gene together 
with 1–3 highly conserved phage genes on the other side 
(lysin, holin, and/or hyaluronidase genes) are likely to fa-
cilitate recombination events leading to swapping of toxin 
genes among bacterial isolates (Figure 1) (19). This notion 
is supported by the fact that strains belonging to the same 
serotype may have different virulence components car-
ried by the same or highly similar phages, whereas those 
belonging to different serotypes may, in fact, have identi-
cal phage-encoded toxins. For example, 4 highly similar 
phages (370.3, 5005.2, MemPhiS, 315.3) identifi ed in M1 
SF370, M1T1 5005, M1T1 6050, and M3 strains, respec-
tively, have different DNases in their lysogenic conversion 
modules. Phages 370.3 and 5005.2 are >99% identical to 
each other and carry the mf3 gene, and each is 90% identi-
cal to MemPhiS and 315.3, which carry the mf4 gene in-
stead (Figure 2).

Acquisition of Novel Virulence Genes by 
Global M1T1 Strain and Effect on Virulence

Two virulence genes, speA2 and sda1, were intro-
duced into the M1T1 strain by prophages and are likely 
to have contributed to its increased fi tness and virulence 
(19,21). SpeA2 is an important and potent streptococcal 
superantigen. Although GAS has a rich superantigen rep-
ertoire, different strains harbor different combinations of 
superantigen genes—some are phage encoded, while oth-
ers are integrated into the bacterial chromosome. Both the 
global M1T1 strain and its ancestral SF370 (15) strain have 

the superantigen-encoding genes speF, speG, speJ, and 
smeZ1. However, these 2 strains differ in that the global 
M1T1 strain has speA2, whereas SF370 has speC (Table). 
Both SpeA and SpeC are prophage-encoded, whereas the 
other M1T1 superantigens are chromosomal. Additionally, 
the clonal M1T1 strain lacks speH and speI, which are en-
coded on a single phage in M1 SF370 (15,21).

Of particular relevance to this discussion is that the 
speA gene was seen in M1 isolates obtained in the early 
20th century but had almost vanished from M1 isolates ob-
tained between the 1920s and early 1980s. The loss of speA 
was thought to be one of the main reasons for the sharp 
decline in severe invasive GAS infections during this time 
(23,24). Likewise, the reintroduction of the speA2 allele in 
the M1T1 clonal strain in the 1980s prompted speculations 
that SpeA, and in particular its allelic variant SpeA2, was 
a major factor in the resurgence of severe invasive GAS 
infections during that time (25). However, additional stud-
ies showed that, although the reintroduction of speA may 
have been a factor, the acquisition of other virulence genes 
by the M1T1 clone is more likely to have had a more pro-
found effect on its increased fi tness and virulence in vivo 
(20,26,27). Nonetheless, the fact that SpeA was missing 
from most GAS isolates for >50 years suggests that the re-
introduction of this superantigen may have increased the 
risk for persons to have invasive infections because they 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 10, October 2008 1513 

hylP hol lys tox prx attR
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Figure 1. Suggested model for toxin mobilization between phages, 
reprinted from Aziz et al. (19). Recombination hot spots on both 
sides of the toxin genes are shown: one is prx (paratox), and the 
other may be lys (lysin), hol (holin), or hylP (phage hyaluronidase).

Figure 2. Similarities and differences 
between the 4 highly related prophages 
5005.2, 370.3, MemPhiS, and 315.3. 
The fi gure, generated by the SEED 
comparison tools (22) (http://theseed.
uchicago.edu), shows the physical 
maps of the 4 prophages near their 
attachment sites. Arrows with identical 
colors designate orthologous genes; 
those in gray designate alternative 
alleles of the genes. p, prx; mf, 
mitogenic factor; cadA, heavy metal/
cadmium transporter ATPase; GAS, 
group A streptococci.
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lack antibodies that neutralize its superantigenic activity. 
Indeed, the lack of superantigen-neutralizing antibodies 
has been shown to increase the risk for invasive disease 
(28,29).

Sda1, which was also acquired by the M1T1 global 
strain, is a potent streptodornase (streptococcal nuclease) 
(20) and is not found in most of the other prevalent strains 
but has been recently reported in an M12 strain (16). Strept-
odornases are secreted extracellular nucleases classically 
thought to play an important role in virulence by degrading 
pus (30). Every GAS serotype sequenced so far contains 
>1 streptodornase paralog. These various streptodornases, 
which differ in the pH optima for their nuclease activity, 
are likely functionally nonredundant, possibly having dif-
ferent substrate specifi city, and may be differentially ac-
tive in certain host niches or at different times during the 
infection. The M1T1 clone has, in addition to sda1, the 
chromosomal streptodornase spd/mf (alias speF) and an-
other phage-encoded streptodornase, spd3/mf3 (or—less 
frequently—spd4/mf4); however, it lacks spd2/mf2 found 
in the M1 SF370 (19,20). Despite the presence of multiple 
DNases in the bacteria, Sda1 has the highest specifi c activ-
ity among the streptococcal nucleases. We showed that the 
increased activity of Sda1 has resulted from a frame-shift 
mutation in its C terminus, and when the additional C-ter-
minal sequence of Sdal was deleted, the enzyme activity 
dropped signifi cantly (20).

Sda1, unlike the other nucleases, appears to play a ma-
jor role in virulence, and inactivating its gene resulted in a 
dramatic loss of virulence (26,27,31), whereas introducing 
it into an avirulent strain led to a virulent phenotype (26). 
Sdal protects bacteria against neutrophils (31)—which en-
trap the bacteria in neutrophil extracellular traps (NETs) 
(32)—by degrading these DNA NETs, thereby freeing the 
bacteria and promoting their ability to invade host tissues 
(26). Additionally, recent evidence suggests that the Sda1 
expression may synergize with host factors, leading to ad-
ditional selective pressure on the bacteria in vivo and re-
sulting in the emergence of a hypervirulent phenotype of 
the same bacteria (27).

Besides the exchange of phage-encoded toxins, addi-
tional recombination events may have contributed to the 
diversifi cation of the M1T1 clone. In a recent study, Sumby 

et al. (21) used DNA–DNA hybridization and single nucle-
otide polymorphism analysis to show that a 36-kb chro-
mosomal region has been horizontally transferred to M1T1 
by recombinatorial replacement from an M12 ancestral 
strain. This chromosomal region harbors genes encoding 
2 important toxins, streptolysin O (SLO) and nicotinamide 
glycohydrolase (NADGH or NADase), both of which were 
more highly expressed in M1T1-MGAS5005 compared 
to M1 SF370 (21). Although these differences in expres-
sion might be a consequence of the recombination event, 
we believe that the enhanced expression of these genes is 
more likely due to a mutation in the covS gene of the stud-
ied MGAS5005 strain, which resulted in higher expression 
of virulence networks (33). SLO is an important GAS cy-
tolysin that enhances cytotoxicity and toxin translocation 
(34,35), and its heightened expression would be expected 
to increase virulence. It is therefore apparent that several 
mechanisms led to GAS diversifi cation and that the glob-
ally disseminated M1T1 clone has acquired several viru-
lence factors that seem to have contributed to its unusual 
persistence, spread, and virulence.

In vivo Selection of Hypervirulent 
Descendents of Global M1T1 Strain

In addition to the introduction and loss of specifi c 
genes in the global M1T1 strain, a high degree of vari-
ability in the expression of virulence genes among isolates 
belonging to this clonal strain was reported (3,36). This 
variable expression, in part, depended on where and when 
the isolates were recovered from the host. However, one of 
the most notable changes in gene expression that arises in 
response to host environmental pressure is the remarkable 
downregulation of the major streptococcal protease, SpeB, 
and the consequent signifi cant increase in bacterial inva-
sion and severity of GAS sepsis (27,37,38).

Earlier studies by Kansal et al. (37) provided the fi rst 
hint for the reciprocal relation between SpeB expression 
and severity of GAS sepsis, when they observed that iso-
lates recovered from patients with more severe cases ex-
pressed no, or signifi cantly less, SpeB compared to those 
recovered from patients with nonsevere cases. In ensuing 
studies, we found that M1T1 regulates its secreted proteins 
by at least 2 mechanisms (39), a transcriptional regulation, 
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Table. Genomic differences between M1T1 and M1 SF370* 
Difference M1T1 SF370
Prophages or prophage remnants SPhinX (speA2), MemPhiS (mf3/mf4), PhiRamid 

(sda1)
370.1 (mf2, speC), 370.2 (speH, speI),

370.3 (mf3), 370.4 (phage remnant) 
Superantigen genes speA2, speG, speJ, smeZ1, speC, speG, speH, speI, speJ, smeZ1
Streptodornases mf/spd, mf3/spd OR mf4/spd4, sda1 mf/spd, mf2, mf3/spd3
Other Insertion sequence (IS1548), SNP in the 

SLO/NADGH region 
*SNP, single nucleotide polymorphism; SLO, streptolysin O; NADGH, nicotinamide glycohydrolase. Toxin gene names in boldface designate genes that 
are unique to either strain. 
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and a posttranslational degradation and remodeling of bac-
terial proteins by SpeB, that, itself, is tightly regulated (40; 
online Technical Appendix, supplementary reference 41). 
The secreted proteome in the presence and absence of ac-
tive SpeB is starkly different. Essentially most extracellular 
virulence factors, including M protein, streptokinase, SpeF, 
Sda1, C5a peptidase, and the secreted inhibitor of comple-
ment, are degraded by this protease, resulting in decreased 
virulence. The advantage of this massive degradation of 
virulence factors to the bacteria is not entirely known, but 
we predict that this may be a means by which the bacte-
ria camoufl age themselves from the host during the initial 
stages of infection. By degrading their virulence compo-
nents, bacteria may evade initial innate host defenses at the 
site of the infection until they gain access to a host niche 
(e.g., skin), where they can start to multiply. Thus, SpeB 
may facilitate the initial invasion of bacteria through its 
proteolytic action on host matrix proteins. However, within 
60–80 hours after infection, the bacteria are subjected to 
a hostile human environment, and consequently, there is 
a selection for more fi t mutants within the bacterial com-
munity that are better adapted to confront host defenses and 
gain access to blood and possibly other sterile sites. The 
more fi t mutants, it turns out, are those that lack SpeB ex-
pression because of a mutation in covS, which is a part of a 
2-component regulatory system (CovRS) involved in regu-
lating 15% of GAS genes including SpeB (online Techni-
cal Appendix, supplementary reference 42). Indeed, recent 
studies provided evidence for the co-existence of at least 
2 very different phenotypic forms of M1T1 bacteria in the 
initial stages of infection through the skin of mice charac-
terized by SpeB+ or SpeB– phenotypes (27,39).

The downregulation of SpeB spares several key viru-
lence factors that include Sda1 and streptokinase. Our recent 
studies showed that sparing Sda1 frees the bacteria from 
neutrophil NETs (27). Similarly, in a human plasminogen-
transgenic mouse model, sparing streptokinase allowed ac-
cumulation of surface plasmin activity and increased bac-
terial evasion (online Technical Appendix, supplementary 
reference 43). Additional differentially expressed genes in 
the in vivo–selected covS mutants are also likely to con-
tribute to increased virulence, and these are currently being 
investigated.

M1T1 and the Future of GAS Epidemiology
Is there an exit plan for M1T1? How long will this 

strain survive and prevail? Will there be another prevalent 
strain in the future? It is intriguing that although M1T1 
causes deadly conditions, this clone keeps infecting many 
persons, retaining its superior prevalence. This suggests 
that there is an exit plan for this clone, or that it is so 
widely spread among the human population that it keeps 
being transmitted through genetically protected persons, 

who serve as reservoirs for it. The diversity within the 
bacterial population in the host also suggests that while 
hypervirulent mutants cause deadly diseases when the 
bacteria invade unusual niches, the less virulent members 
of the same population survive well in the primary niche 
(e.g., the throat or nasopharynx) and thus could drive the 
disease transmission.

Several potentially interactive factors may have con-
tributed to the persistence of M1T1 and may maintain this 
strain for a long time. These factors include the acquisi-
tion of new virulence genes and the differential regulation 
and expression of virulence genes caused by selection of 
mutants within the microbial community. These changes 
in the pathogen, as well as changes in herd immunity and 
differential host susceptibility, are likely to create dynamic 
interactions between streptococci and their human host.

When novel strains or clones emerge that express 
novel proteins or variants of old proteins, these strains are 
endowed with the ability to better withstand the pressure 
of herd immunity. According to this hypothesis, M1T1 and 
other strains that reemerged in the mid-1980s may have 
successfully survived herd immunity either because they 
acquired new protein-encoding genes or because they pos-
sessed allelic variants of key genes encoding proteins and/
or novel alleles that were as-yet unsampled by the immune 
system. Also, the acquisition of new genes or the spar-
ing of existing proteins from proteolytic degradation may 
have endowed the bacteria with means to better evade host 
immune defenses.

In summary, we believe that the emergence of the 
M1T1 strain, its diversifi cation by phage acquisition, and 
the in vivo selection of more fi t members of its commu-
nity present an intriguing example of molecular events that 
can drastically change the epidemiology and virulence of 
an otherwise avirulent or less virulent organism. Predicting 
whether other GAS strains may follow a similar trajectory 
to M1T1 is diffi cult: The next prevalent strain to emerge 
may have to combine changes in chromosomal and phage-
encoded genes to enhance its fi tness and allow it to adapt 
to different host environments; it also has to be resistant 
enough to phage-driven lysis. (More prophages enrich the 
bacteria with additional toxins, but they may also bring the 
potential risk of lysing the bacteria at any time a phage is 
induced.) As there are now more and more examples of 
phage exchange even within and between different bacte-
rial species (online Technical Appendix, supplementary 
reference 44), the traditional classifi cation schema may 
have to be replaced by ones that better refl ect the bacterial 
virulome. This virulome, as discussed here, can be grossly 
altered, depending on the environment the bacteria face and 
the consequent selection of underrepresented minority of 
the bacterial community that is best adapted to deal with 
various hostile host milieus.
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