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We aimed to map the probability of Schistosoma hae-
matobium infection being >50%, a threshold for annual 
mass praziquantel distribution. Parasitologic surveys were 
conducted in Burkina Faso, Mali, and Niger, 2004–2006, 
and predictions were made by using Bayesian geostatisti-
cal models. Clusters with >50% probability of having >50% 
prevalence were delineated in each country.

Large-scale control programs for tropical infectious dis-
eases have been initiated in recent years (1,2), after 

renewed commitment by governments and international 
funding agencies to support the control of previously ne-
glected tropical diseases, including parasitic diseases such 
as malaria, schistosomiasis, onchocerciasis, lymphatic 
fi lariasis, and soil-transmitted helminth infections. Schis-
tosomiasis is the second-most important parasitic disease 
throughout the world, with an estimated 207 million per-
sons infected (3).

Success and sustainability of large-scale disease con-
trol programs depend on the allocation of resources where 
they will have maximum benefi t (4). Given that tropical 
infectious diseases, such as schistosomiasis, tend to occur 
in spatially defi ned foci (i.e., clusters or hot spots) (5), ef-
fi cient resource allocation relies on identifying the location 
of high-risk populations. Because disease-endemic coun-
tries do not have sophisticated surveillance systems that 
can accurately delineate disease clusters, alternative meth-

ods such as sample-based spatial prediction need to be ap-
plied to target control programs.

Among the multinational and multi-institutional part-
nerships formed to confront the problem of neglected tropi-
cal diseases is the Schistosomiasis Control Initiative (SCI; 
www.schisto.org), which supports national schistosomiasis 
and soil-transmitted helminth control programs in Burkina 
Faso, Mali, and Niger (and other African countries). Len-
geler et al. (6) describe 2 approaches to targeting interven-
tions: one in which the number of recipient schools or com-
munities is determined by available resources and the other 
in which a prevalence threshold is defi ned above which 
all schools or communities benefi t from the intervention. 
SCI takes the latter approach, delineating areas according 
to the World Health Organization (WHO)–recommended 
threshold prevalence of 50% for annual mass treatment. 
However, even this approach needs to take into account 
factors such as resource availability and decision risk be-
cause uncertainties exist when delineating areas based on 
the selected threshold.

Knowledge of uncertainty regarding the location and 
spatial dimensions of clusters is important because it makes 
possible a prior assessment of the risks and potential conse-
quences associated with different resource allocation strat-
egies. Uncertainties in spatial prediction maps originate 
from factors such as natural random variation and measure-
ment error of the outcome variable and covariates. Bayes-
ian methods are useful because they provide an approach 
for propagating uncertainty (through a prediction model) in 
regards to the spatial predictions. Only recently have prac-
tical applications of Bayesian methods in large-scale tropi-
cal disease control programs been reported (7–9).

The Study
The objective of this study was to produce maps that 

could be integrated into the SCI-supported national inter-
vention strategies and that explicitly represent uncertain-
ties in spatial predictions so that national control managers 
could judge the quality of the evidence upon which the strat-
egies will be based. The SCI-supported programs involve 
mass distribution of praziquantel (for urinary and intestinal 
schistosomiasis) and albendazole (for soil-transmitted hel-
minths). The parasitic infection with the highest prevalence 
is urinary schistosomiasis, caused by fl ukes (Schistosoma 
hematobium), and the programs are planned to control this 
disease (2).

Parasitologic data were collected in coordinated 
school-based fi eld surveys in Burkina Faso, Mali, and Ni-
ger (Figure 1) during 2004–2006 (preintervention) by using 
standardized protocols (available on request). The collated 
dataset covered a spatially contiguous area, ≈2,750 km × 
850 km, and included the infection status of 27,939 school-
age children in 418 randomly selected locations. Infection 
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status was defi ned according to egg count determined by 
microscopic examination of urine samples; >1 S. hemato-
bium eggs indicated infection.

Spatial prediction was based on a logistic regression 
model (Table), constructed by using the software Win-
BUGS, version 1.4.2 (MRC Biostatistics Unit, Cambridge 
and Imperial College, London, UK). The model had infec-
tion status as the binary outcome variable, age and sex of 
the survey participants as individual-level fi xed effects, and 
distance from perennial water body (derived from electron-
ic maps obtained from the Food and Agriculture Organiza-
tion) and land surface temperature (LST; with a quadratic 
term; see Hay et al. [10] for details on how these data were 
derived) as survey location–level fi xed effects. Variable se-
lection methods and the model are presented in the online 
Technical Appendix (available from www.cdc.gov/EID/
content/14/10/1629-Techapp.pdf). The model also includ-
ed a geostatistical random effect for residual spatial cluster-
ing of infection prevalence (11).

A prevalence map for the study area was constructed, 
using the model, by predicting infection prevalence at the 
centroids of cells of a 0.15 × 0.15 decimal degree (≈18 km 
× 18 km) grid. This model was implemented with the spa-
tial.unipred command of WinBUGS (details are provided 
in the online Technical Appendix). Estimates from Bayes-
ian models are distributions (termed posterior distributions) 
that represent the probability of each of a range of plausible 
values being true for the variable being modeled. To quan-
tify the uncertainties surrounding the model predictions, we 
plotted the probability of each prediction location having a 
prevalence >50%, rather than mean predicted prevalence at 
each location. The probabilities were calculated from the 
posterior distributions of predicted prevalence at each loca-
tion (i.e., if 95% of the posterior distribution of predicted 
prevalence was >0.5, the probability of prevalence >50% at 
that location was 95%).

Cross-validation was done by randomly allocating sur-
vey locations to 3 groups and undertaking 3 separate runs 
of the model; 1 of the 3 groups was sequentially omitted, 
and predicted prevalence at the omitted locations was deter-
mined by using the model. Predicted prevalence was com-
pared with observed prevalence, dichotomized, according 
to a 50% observed prevalence threshold. The comparison 
statistic was the area under the curve (AUC) of the receiver 
operating characteristic, and a value of >0.7 was consid-
ered to indicate acceptable predictive ability. An average 
AUC was calculated across the 3 model runs.

In the fi nal model (Table), statistically signifi cant cor-
relations suggested that infection prevalence was higher in 
older boys and increased with proximity to perennial bod-
ies of water, but no association was found between preva-
lence and LST. The range over which spatial correlation 
was >5% (chosen to indicate statistically important spatial 
correlation) was ≈177 km, indicating the approximate ra-
dius of clusters. Results of the validation analysis showed 
an average AUC of 0.86, indicating that the model had an 
acceptable predictive performance.

Bayesian probability maps were produced for each sex 
and age group, but for illustrative purposes we present pre-
dicted probability of prevalence >50% in boys ages 13–16 
years (the group with the highest infection prevalence; Fig-
ure 2). Large clusters of prediction locations with a high 
probability (i.e., >50%; indicative of low uncertainty) of 

Figure 1. Prevalence of infection with Schistosoma hematobium at 
418 survey locations in Burkina Faso, Mali, and Niger, 2004–2006.

Table. Bayesian logistic regression model of prevalence of 
infection with Schistosoma haematobium in children in 418 
schools in Burkina Faso, Mali, and Niger, 2004–2006*  

Posterior distribution 
Variable Mean (95% CrI) SD
Female gender 0.70 (0.65–0.76) 0.03
Age, y 
 9–10  1.16 (1.00–1.33) 0.08
 11–12 1.51 (1.31–1.73) 0.10
 13–16 1.79 (1.53–2.06) 0.14
Distance to perennial water body 0.34 (0.21–0.54) 0.08
Land surface temperature 0.80 (0.51–1.21) 0.18
Land surface temperature2 1.10 (0.85–1.40) 0.14
Rate of decay of spatial correlation 2.03 (1.48–2.74) 0.32
Variance of the spatial random 
effect (sill) 

7.03 (5.36–9.31) 1.01

*CrI, Bayesian credible interval. Values for the fixed effects are odds 
ratios; note the odds ratios for the climate variables are on a common 
scale, where the variables were standardized to have a mean = 0 and SD 
= 1. The reference group for sex was boys and for age was 6–8 y. The 
number of children found to be infected with S. haematobium was 
modeled by using a binomial distribution described by the proportion 
infected and the total number sampled in each survey location. The 
proportion infected was modeled by using logistic regression with an 
intercept, covariates (sex, age, distance to perennial water body, land 
surface temperature, and a quadratic term for land surface temperature), 
and a random effect that described spatial correlation (i.e., clustering). 
Model outputs were distributions (termed posterior distributions) that can 
be summarized by using the mean, SD, and 95% CrI (representing the 
range of values that contains the true value with a probability of 95%). 
More details on the model are presented in the online Technical Appendix 
(available from www.cdc.gov/EID/content/14/10/1629-Techapp.pdf). 
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prevalence being >50% intervention threshold were located 
in a mid-latitudinal band across Mali, running from west-
ern to central regions, and in the Niger River valley region 
of Niger. Smaller clusters were located in various parts of 
southern and eastern Mali, northwestern and northeastern 
Burkina Faso, and south-central Niger.

Conclusions
Future schistosomiasis control plans should acknowl-

edge uncertainties such as those presented in Figure 2. A 
possible approach would be to introduce a second threshold 
for the level of uncertainty that a location is above the inter-
vention prevalence threshold; if the uncertainty is greater 
than this second threshold, then the location is excluded 
until new evidence is obtained that confi rms prevalence is 
above or below the intervention prevalence threshold. This 
second uncertainty threshold should be determined by the 
quantity of resources available for disease control and the 
level of decision risk deemed appropriate.

In addition to providing an evidence base for distrib-
uting resources in 3 West African countries as part of the 
SCI-supported national control programs, the maps pre-
sented here have a potential role in maintaining sustainabil-
ity of schistosomiasis control after SCI support ends (SCI 
is funded through 2009). They can be used as advocacy 
tools for channeling funds to high-risk populations in the 
affected countries and, in the likely event that money for 
schistosomiasis control in these countries becomes more 
limited after SCI support ends, they can be used to ensure 

that scarce governmental resources are distributed as effi -
ciently as possible. National coordinators who might face 
accountability for targeted (i.e., unequal) distribution of 
resources will benefi t from the defendable, scientifi cally 
sound methods presented in this article. By focusing on 
uncertainty in spatial predictions, more fl exible tools for 
disease control can be developed that allow the geographic 
dimensions of control programs to be scaled and modifi ed 
according to available resources and acceptable levels of 
decision risk.
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