
In this issue of Emerging Infectious Diseases, Victoria 
Davey and Robert Glass present a paper (1) in which 

they consider the question of when to “switch off” com-
munity-based interventions designed to reduce the spread 
of pandemic infl uenza. These authors attempt to answers 
questions such as when it would be optimal to reopen 
schools that have been closed as part of a nonpharmaceuti-
cal, communitywide infl uenza mitigation strategy.

The authors use a mathematical model, previously 
described in this journal (2), to simulate the spread of 
pandemic infl uenza throughout a community that repre-
sents the US population. This model is similar to another 
model that was used to examine the effectiveness of clos-
ing schools to slow the spread of infl uenza pandemic (3). 
Both models simulate the spread of infl uenza by dividing 
a representative population into households. The models 
then track each household member with each member hav-
ing a defi ned number of random contacts (per day) that 
are allocated within a network of possible contacts. Once 
a contact is calculated to have occurred, the probability of 
infl uenza transmission is calculated. Also included in the 
calculations are variables such as infl uenza incubation and 
infectiousness periods.

What does the model “say”? Davey and Glass con-
sidered what would happen if schools were reopened and 
community-wide sequestering were halted when infl uenza 
cases in a community fall below preset thresholds (e.g., 1, 
2, or 3 cases in 7 days). Sequestering strategies would be 
restarted if the epidemic pandemic resurged and >10 cases 
occurred in a 7-day period. This “pulsing technique” would 
reduce the number of days needed to sequester schoolchil-
dren and the community by 6% to 32%. The authors main-
tain that for a given pandemic scenario, the reduction in 
days sequestered would not notably affect the number of 

persons infected. The implication is that reduction in days 
sequestered will reduce the economic impact and social 
disruption caused by community-wide, nonpharmaceutical 
interventions.

Are the results “believable”? As with all mathemati-
cal models, some potential technical problems exist. First, 
almost all models that simulate individual person-to-per-
son infl uenza transmission use 1 or 2 databases that record 
the probability of infl uenza transmission. One database 
was recorded in the early 1970s in Tecumseh, Michigan 
(4), and the other among ≈400 households across France 
(5). Is it reasonable to use these estimates to simulate in-
fl uenza transmission in every community, town, city, and 
metropolis in the United States? Furthermore, the research-
ers who calculated these transmission probabilities did not 
actually measure the probabilities of who infected whom. 
These probabilities were calculated by using a statistical 
technique known as maximum likelihood estimation. Es-
sentially, this is reverse engineering to fi nd the transmis-
sion probabilities that best fi t the measured data (number of 
cases over time). However, as others have demonstrated, it 
is possible to reverse-engineer several transmission prob-
abilities that fi t the data (6). Would the results calculated 
by Davey and Glass appreciably change if another set of 
transmission probabilities was used?

Other assumptions may also be examined. Typically, 
as with other pandemic models, the authors model differ-
ent rates of compliance, but each rate is assumed to remain 
static for the duration of sequestering (e.g., 50% compliance 
during 40 days of sequestering). In reality, compliance with 
sequestering may be more fragmented; e.g., teenagers may 
stay sequestered during the morning but not so much in the 
afternoon. Other behavior may change during a pandemic; 
e.g., people may alter the number and duration of contacts, 
with degree of alteration changing as the pandemic pro-
gresses. These changes in behavior could either reinforce 
or reduce the effectiveness of nonpharmaceutical interven-
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tions (7,8). Furthermore, compliance can decrease dramati-
cally when an intervention is stopped and then restarted. 
Crosby provides an excellent example of reduced compli-
ance after an attempt to reintroduce compulsory wearing of 
facemasks in San Francisco during the 1918 pandemic (9).

Are such models useful? Yes, so long as readers ac-
cept that the results are illustrative and are not absolutely 
accurate. The models clearly illustrate the complexities of 
estimating infl uenza transmission and the potential success 
of interventions (i.e., such models require a very large set 
of variables, many with uncertain values). Perhaps the most 
useful role of such models is the debate that is stimulated 
regarding the most appropriate, and most feasible (i.e., 
most likely to work), set of interventions.

Dr Meltzer is the senior health economist and a Distinguished 
Consultant at the Centers for Disease Control and Prevention in 
Atlanta, Georgia, and an associate editor for Emerging Infectious 
Diseases. His research interests include modeling of potential re-
sponses to smallpox as a bioterrorist weapon, examining the eco-
nomics of vaccinating restaurant foodhandlers against hepatitis A, 
assessing the economic impact of pandemic infl uenza, and devel-
oping software to help public health offi cials plan and prepare for 
the next infl uenza pandemic.

References

  1.  Davey VJ, Glass RI. Rescinding community mitigation strategies in 
an infl uenza pandemic. Emerg Infect Dis. 2008;14:365–72.

  2.  Glass RJ, Glass LM, Beyeler WE, Min HJ. Targeted social distanc-
ing design for pandemic infl uenza. Emerg Infect Dis. 2006;12:
1671–81.

  3.  Haber MJ, Shay DK, Davis XM, Patel R, Jin X, Weintraub E, et al. 
Effectiveness of interventions to reduce contact rates during a simu-
lated infl uenza pandemic. Emerg Infect Dis. 2007;13:581–9.  

  4.  Longini IM, Koopman JS, Monto AS, Fox JP. Estimating household 
and community transmission parameters for infl uenza. Am J Epide-
miol. 1982;115:736–51.

  5.  Carrat F, Luong J, Lao H. Sallé AV, Lajaunie C, Wackernagel H. 
A “small-world-like” model for comparing interventions aimed 
at preventing and controlling infl uenza pandemics. BMC Med. 
2006;4:26.

  6.  Vynnycky E, Edmunds WJ. Analyses of the 1957 (Asian) infl uenza 
pandemic in the United Kingdom and the impact of school closures. 
Epidemiol Infect. 2008;136:166–79.

  7.  Centers for Disease Control and Prevention. Interim pre-pandemic 
planning guidance: community strategy for pandemic infl uenza miti-
gation [cited 2007 Dec 22]. Available from http://www.pandemicfl u.
gov/plan/community/commitigation.html

  8.  Ferguson N. Capturing human behaviour. Nature. 2007;446:733.
  9.  Crosby AW. America’s forgotten pandemic: the infl uenza of 1918. 

2nd ed. Cambridge (UK): Cambridge University Press; 2003.

Address for correspondence: Martin I. Meltzer, National Center for 
Preparedness, Detection, and Control of Infectious Diseases, Centers 
for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop D59, 
Atlanta, GA 30333, USA; email: mmeltzer@cdc.gov

COMMENTARY

510 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 3, March 2008

Search 
past Issues




