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During a study to extend our knowledge of the host 
range and genetic diversity of arenaviruses in Great Brit-
ain, 66 of 1,147 rodent blood samples tested for antibody, 
and 127 of 482 tested by PCR, were found positive. All se-
quences most closely resembled those of previously identi-
fi ed lymphocytic choriomeningitis virus.

Viruses in the family Arenaviridae are separated into 2 
distinct serocomplexes, the New World serocomplex 

and the Old World serocomplex (1). Several arenavirus 
species are known to cause human disease, including lym-
phocytic choriomeningitis virus (LCMV), which causes 
infl uenza-like clinical signs, occasionally with neurologic 
complications. Infection may be asymptomatic in up to one 
third of patients (2), and serious complications often occur 
in intrauterine infection (3). Less severe cases of adult hu-
man infection are likely underreported and often misdiag-
nosed (4).

LCMV is found worldwide, probably because of its as-
sociation with its natural Old World host, the house mouse, 
Mus musculus (5). Although antibodies have also been de-
tected in other rodent species (6,7), arenaviruses are known 
to be serologically cross-reactive. Few isolates of LCMV 
have been obtained from wild rodents so little is known 
about its genetic diversity. Recent studies on American are-
naviruses found that diverse arenaviruses co-evolved with 
their rodent hosts (8), a fi nding that suggests that a more 
thorough study of European rodents might also identify 
novel arenaviruses. The purpose of this study was therefore 
to extend our knowledge of LCMV and LCMV-like arena-
viruses in rodents in Great Britain.

The Study
In total 1,147 blood samples were collected from ro-

dents: 1,060 were live-trapped, wild animals from <20 sites 
(Table 1), and 87 blood samples were collected from a cap-
tive colony of wild house mice (9) and tested serologically. 

All animal research was conducted under license, accord-
ing to UK regulations.

Serum samples were separated by centrifugation 
(10,000 rpm, 10 min) and tested for LCMV antibody by 
using the manufacturer’s protocol for commercial indirect 
fl uorescent antibody assay slides (Charles River Laborato-
ries, Wilmington, MA, USA). A 1:40 dilution of anti-rat 
or anti-mouse immunoglobulin G fl uorescein isothiocya-
nate (Sigma-Aldrich, Gillingham, UK) or a combination of 
both were used as secondary antibody. Ninety-three serum 
samples (from the original serum samples tested for anti-
body) that were either antibody positive or from sites with 
high seroprevalence were tested for arenavirus RNA by 
PCR. Another 379 blood samples from the captive colony 
of house mice, which had not been previously tested for 
antibody, were also tested. The PCR targeted a fragment of 
the glycoprotein precursor gene (GPC) (10). A selection of 
samples found negative by the GPC PCR were subsequently 
retested by PCR targeted at a fragment of the nucleoprotein 
(N) gene (8), by using primers to sequences common to the 
Old World arenaviruses. Total RNA was extracted by us-
ing QIAamp viral RNA mini-kit (QIAGEN, Crawley, UK), 
converted to cDNA, and amplifi ed by using a single-step 
kit (Superscript III one-step RT-PCR with Platinum Taq 
polymerase system; Invitrogen, Paisley, UK) in conjunc-
tion with oligonucleotides arena1+ and LCMV322– (10) or 
1010C and either OW1696R or NW1696R (8). Products 
were separated and visualized by agarose gel electropho-
resis, and amplicons were purifi ed with the QIAquick PCR 
purifi cation kit (QIAGEN). Bidirectional sequencing was 
performed off-site (MWG Biotech AG, Ebersberg, Ger-
many). The 97-nt sequences generated here were deposited 
with GenBank (accession nos. DQ275199–DQ275295).

The software package MEGA version 4.0 (11) was 
used to construct an alignment of a 283-nt fragment of the 
GPC gene nucleotide sequences and predicted amino acid 
sequences, and for phylogenetic analysis with the neighbor-
joining method (p distance model), with bootstrap support 
based on 1,000 pseudoreplicates. Other GenBank sequenc-
es included for comparison are listed in Table 2. Pairwise 
genetic distances were calculated by using the p distance 
model; percentage sequence identities were calculated by 
subtracting the genetic distances from 1.0 and multiplying 
by 100.

Overall, 66 of 1,147 serum samples and 7 of 9 rodent 
species had antibodies to arenaviruses. Sciurus vulgaris 
had the highest prevalence, 26%, although only 15 squir-
rels were tested. M. musculus had the second highest preva-
lence, 17.5%. Antibodies were also detected in Apodemus 
sylvaticus, Microtus agrestis, Micromys minutis, captive-
housed Cynomys ludovicianus, and Rattus norvegicus. 
Seroprevalence varied between species (1.4%–26%) and 
between sites (0%–50%) (Table 1).
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GPC PCR amplicons were obtained from 127 of 472 
tested samples, and sequences were determined for 97 sam-
ples (Table 1). All positive samples were from Mus muscu-
lus except 1 from A. sylvaticus. Twenty samples negative 

in the GPC PCR, but seropositive or from high prevalence 
sites, were tested by N gene PCR, and 2 were weakly posi-
tive: 1 S. vulgaris and 1 A. sylvaticus. In neither case, how-
ever, could a sequence be obtained from the amplicon.
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Table 1. Rodent species, numbers tested, seroprevalence, and viral RNA prevalence to LCMV at each UK and Republic of Ireland 
site*
Site code and year Geographic location Species tested for antibody Species tested for viral RNA 
PHF 2004 Cheshire MMu (0/4), RN (0/2); SP = 0.0 
PHF 2005  Cheshire MMu (8/26); SP = 30.8
BHF 2004 Cheshire MMu (4/10); SP = 40.0
BHF 2005 Cheshire MMu (2/2), RN (0/2); SP = 50.0 

MMu (2/9), RN (0/2) – 2 
sequences

BGF Cheshire MMu (0/7), RN (0/2); SP = 0.0 
CLF 2004 Cheshire MMu (0/6), RN (0/2); SP = 0.0 
CLF 2005 Cheshire MMu (0/12), RN (0/4); SP = 0.0 
MF 2002 Cheshire AS (0/10), MG (0/9), MA (0/2), MMu (0/30); SP = 0.0 
MF 2004 Cheshire AS (4/10), MG (0/1), MA (0/1), MMu (2/4); SP = 37.5 

AS (1/10), MG (0/1), MA (0/1), 
MMu (2/4) – 3 sequences 

CZ 2002 Cheshire AS (0/4), MG (0/4), CL (4/61), MMi (0/22), RN (0/2); 
SP = 4.3 

CZ spring 2003 Cheshire AS (0/9), MG (0/3), MA (0/4), MMi (1/3), SP = 5.3 
CZ autumn 2003 Cheshire AS (1/18), MG (0/19), MA (0/4), MMu (0/1), SP = 2.9 
CZ 2004 Cheshire MMu (1/19), RN (1/12), SP= 3.2 

AS (1/1), CL (0/4), MMi (0/1), 
MMu (0/1) – 0 sequences 

DF Cheshire MMu (1/69), SP = 1.4
MW Cheshire MG (0/105), AS (0/45), SP = 0.0 
RH Cheshire MG (0/19), AS (0/49), SP = 0.0 
LVFS Cheshire RN (0/2, SC (0/4), SP = 0.0 
FA Merseyside MA (0/2), AS (0/24), SP = 0.0 
KF Northumberland MA (2/104), SP = 1.9
LI North Devon RN (0/40), SP = 0.0 
IOW Isle of Wight SV (1/18), SP = 5.6
TF Thetford SV (1/21), SP = 4.8
CF Cumbria SC (0/10), SV, (0/4), SP = 0.0 
NI Northern Ireland AS (1/149), SP = 0.7
CA Republic of Ireland MG (0/15), SP = 0.0 
CC Republic of Ireland AS (0/7), SP = 0.0 
TW Republic of Ireland AS (0/10), SP = 0.0 
Other Various locations RN (1/6), SC (0/1), SV (2/26), SP = NA AS (0/1), MA (0/2), MMu 

(0/31), RN (0/5), SV (1/4) – 0 
sequences

Captive colony Captive colony, 
Cheshire

MMu (30/87), SP = 34.5 MMu (122/403) – 92 
sequences

*LCMV, lymphocytic choriomeningitis virus; SP, site prevalence (%). Species key: MMu, Mus musculus (house mouse); RN, Rattus norvegicus (brown or 
Norway rat); AS, Apodemus sylvaticus (wood mouse); MG, Myodes glareolus (bank vole); MA, Microtus agrestis (field vole); MMi, Micromys minutis
(harvest mouse); CL, Cynomys ludovicianus (black-tailed prairie dog); SV, Sciurus vulgaris (red squirrel); SC, Sciurus carolensis (gray squirrel); NA, not 
available. Species containing positive animals are in boldface italics, with number positive and number tested in parentheses. 

Table 2. Percentage nucleotide identities between the study sample sequences (all and from the captive colony only) and previously 
isolated LCMV and Lassa virus sequences* 
Sequence All study sequences, % Captive colony sequences only, % 
All study sequences 93.6–100 NS
Captive colony sequences only NS 97.4–100
LCMV CIPV76001 Pasteur (AF095783; France) 78.7–80.5 78.7–80.5
LCMV CIP97001 (AF079517; France) 79.4– 83.1 80.9–83.1
LCMV Marseille (DQ286931; France) 82.8– 83.9 82.8–83.5
LCMV CH5871 (AF325215; Germany) 81.6–83.1 81.6–83.1
LCMV CH5692 (AF325214; Germany) 81.3–82.8 81.3–82.8
LCMV MX (EU195888; Slovakia) 78.7–80.5 78.7–80.5
LCMV Armstrong (M20869; USA) 82.8– 85.8 83.9–85.8
LCMV WE (M22138) 82.0–84.3 82.0–84.3
Lassa LP (AF181853) 58.1–59.9 58.8–59.9
*LCMV, lymphocytic choriomeningitis virus; NS, not shown. 
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Nucleotide and amino acid GPC sequence identities 
for all the samples in this study ranged from 93.6%–100% 
(Table 2), and 94.5%–100%, respectively (data not shown). 
When compared with other arenaviruses, the nucleotide 
sequences exhibited 78.7%–85.8% identity with LCMV 
reference sequences and only 58.1%–59.9% identity with 
Lassa virus (online Appendix Figure, available from www.
cdc.gov/EID/content/14/9/1455-appF.htm).

Although antibodies to arenaviruses have been re-
ported in a range of European rodent species, our study 
provided evidence of arenaviruses infecting red squirrels 
(S. vulgaris) and European harvest mice (M. minutis). An-
tibodies to arenaviruses have been reported in introduced 
S. carolensis in Great Britain (12) but were not detected in 
this study. We also reported antibodies to arenaviruses in 
black-tailed prairie dogs (Cynomys ludovicianus): those 
tested in this study were part of a colony in a zoo, how-
ever, and had contact with wild mice, some of which were 
seropositive. As found in previous studies, Mus musculus 
was more likely to be infected with LCMV than other ro-
dent species.

The nucleotide sequences of most PCR amplicons 
clearly identifi ed LCMV as the most frequent cause of 
the antibody detected. However, the detection of arenavi-
ral RNA in 2 animals by the N gene PCR, but not by the 
LCMV-specifi c GPC PCR, may suggest the presence of 
another species of arenavirus. Further studies are needed to 
determine if other arenaviruses species are present in Euro-
pean rodent populations (8).

Genetic heterogeneity was present within and between 
sites (Figure), as seen in previous studies of arenaviruses 
(13,14). Sequences from animals in the captive colony 
and a nearby farm (MF) clustered and were different from 
those from a more distant farm (BHF). Furthermore, all of 
the British sequences clearly clustered separately from the 
reference strain sequences (from the United States, France, 
Germany, or Slovakia). These fi ndings suggest spatial 
heterogeneity in sequence may be refl ected in host range 
and pathogenicity. Sequencing might be useful in tracing 
sources of future human outbreaks.

Conclusions
This study has increased the list of European (and 

North American) rodents that may be infected with LCMV 
and that might therefore pose a risk to humans. The genetic 
variation observed and potential variations in pathogenicity 
may indicate that some wildlife populations pose more of a 
public health risk than others. Further studies are needed to 
assess which mutations cause increased pathogenicity and 
to establish whether or not LCMV represents the only are-
navirus present in European rodent populations.
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Figure. Unrooted neighbor-joining tree using the p-distance model 
(1,000 replicates) for a section of the glycoprotein precursor gene 
gene, showing bootstrap values of >60 for all sequences identifi ed in 
this study (283 bp) and indicating site of origin. Captive colony, MF 
2004, and BHF 2005 as in Table 1. MF* is from Apodemus sylvaticus, 
and all other sequences are from Mus musculus. Scale bar indicates 
number of substitutions per site.
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