
Among 4,215 Streptococcus pneumoniae isolates ob-
tained in Spain during 2006, 98 (2.3%) were ciprofloxacin 
resistant (3.6% from adults and 0.14% from children). In 
comparison with findings from a 2002 study, global resis-
tance remained stable. Low-level resistance (30 isolates 
with MIC 4–8 µg/mL) was caused by a reserpine-sensitive 
efflux phenotype (n = 4) or single topoisomerase IV (parC 
[n = 24] or parE [n = 1]) changes. One isolate did not show 
reserpine-sensitive efflux or mutations. High-level resis-
tance (68 isolates with MIC ≥16 µg/mL) was caused by 
changes in gyrase (gyrA) and parC or parE. New changes 
in parC (S80P) and gyrA (S81V, E85G) were shown to be 
involved in resistance by genetic transformation. Although 
49 genotypes were observed, clones Spain9V-ST156 and  
Sweden15A-ST63 accounted for 34.7% of drug-resistant 
isolates. In comparison with findings from the 2002 study, 
clones Spain14-ST17, Spain23F-ST81, and ST8819F de-
creased and 4 new genotypes (ST9710A, ST57016, ST43322, 
and ST71733) appeared in 2006.

The bacterium Streptococcus pneumoniae is a serious 
cause of illness and death and a major etiologic agent 

of community-acquired pneumonia, meningitis, and acute 
otitis media. Pneumococcal resistance to antimicrobial 

drugs (including β-lactams, macrolides, tetracycline, and 
cotrimoxazole) has become a worldwide problem (1); new 
fluoroquinolones are being used as therapeutic alternatives 
for treatment of adult patients with community-acquired 
pneumonia (2). Resistance to fluoroquinolones in S. pneu-
moniae can be acquired by point mutations, intraspecific 
recombination (3) or interspecific recombination with the 
S. mitis group (3–7). Resistance is caused mainly by amino 
acid changes in quinolone resistance–determining regions 
(QRDRs) of the subunits of DNA topoisomerase IV (topo 
IV; parC2 and parE2) and DNA gyrase (gyrA2 and gyrB2) 
enzymes that control DNA topology. In addition, fluoro-
quinolone efflux also contributes to resistance (8). Genetic 
and biochemical studies have shown that for most fluoro-
quinolones, such as ciprofloxacin and levofloxacin, topo IV 
and gyrase are primary and secondary targets, respectively 
(9–13). However, gyrase is the primary target for moxi-
floxacin (14).

Although current prevalence of fluoroquinolone re-
sistance in pneumococci is <5% (15–17), surveillance is 
necessary. Introduction of the 7-valent conjugate pneumo-
coccal vaccine (PCV7), which includes serotypes such as 
6B, 9V, 14, and 23F that are often associated with resis-
tance to fluoroquinolones and other antimicrobial drugs, 
has resulted in changes in the epidemiology of invasive 
pneumococcal disease (18–20). Since the introduction of 
PCV7 in Spain in late 2001, ≈47% of children have been 
vaccinated (21).

In this study, we investigated the prevalence of fluo-
roquinolone-resistant pneumococci in Spain during 2006. 
Mutations in the QRDRs of parC, parE, and gyrA were 
identified, and the presence of reserpine-sensitive fluoro-
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quinolone efflux was determined. In addition, resistance 
associations with other antimicrobial drugs and character-
istics of drug-resistant clones were determined. To better 
evaluate changes in the epidemiology of resistance after 
the introduction of PCV7 in children, we compared our 
results with those of a similar study that tested isolates 
from 2002.

Methods

Bacterial Isolates, Serotyping, Susceptibility  
Testing, and Genetic Transformation

We studied 4,215 S. pneumoniae isolates from 2 hos-
pitals (in Barcelona and San Sebastián), and a sample from 
110 hospitals throughout Spain (Spanish Reference Labo-
ratory, Madrid). Of the isolates, 2,682 were from adults, 
1,400 from children, and 133 from persons whose ages were 
unknown. A total of 2,101 (49.9%) isolates were obtained 
from blood or other sterile sites; 1,055 (25%) from the low-
er respiratory tract; 960 (22.8%) from the upper respiratory 
tract, otic and conjunctival sites; and 99 (2.3%) from other 
sites. Isolates were confirmed as S. pneumoniae by standard 
methods, and serotypes were determined by the Quellung 
reaction. Ciprofloxacin susceptibility was determined by 
broth microdilution tests (Sensititer; Trek Diagnostics Inc., 
East Grinstead, UK) and by agar dilution according to the 
Clinical and Laboratory Standards Institute guidelines (22). 
Reserpine-sensitive fluoroquinolone efflux phenotype was 
determined as described (23). We performed genetic trans-
formation as described (24) by using S. pneumoniae strains 
R6 and T1 (25) as receptors. For selection of transformants, 
we used media plates containing 1 µg/mL (R6 derivatives) 
or 8 µg/mL (T1 derivatives) of ciprofloxacin.

Pulsed-Field Gel Electrophoresis  
and Multilocus Sequence Typing

Pulsed-field gel electrophoresis (PFGE) patterns were 
determined by using SmaI and ApaI as described (24) and 
compared with 26 representative clones of the Pneumococ-
cal Molecular Epidemiology Network (26). Isolates with 
patterns varying by <3 bands were considered to represent 
the same PFGE type (27). Multilocus sequence typing was 
performed as described (28) with representative isolates 
of PFGE types shared by >3 isolates (www.mlst.net). We 
analyzed selected strains representative of dominant clones 
from the 2002 study by multilocus sequence typing.

PCR Amplification and DNA Sequence Determination
Oligonucleotides parE398 (29) and parC152 (10) were 

used to amplify parE and parC QRDRs. All isolates yield-
ed fragments of 1.6 kb, with the exception of ciprofloxacin-
resistant (CipR) isolates CipR17, CipR39, CipR74, and 
CipR76, which yielded fragments of ≈5, 5, 5, and 7 kb, 

respectively. These PCR fragments were sequenced as de-
scribed (24). Oligonucleotides gyrA44 and gyrA170 (29) 
were used to amplify and sequence gyrA QRDRs. Oligo-
nucleotides antUP and antDOWN (4) were used to detect 
the ant gene.

Results
Among the 4,215 isolates studied, 98 were CipR. Of 

these isolates, 30 (30.6%) showed low-level resistance (LL-
CipR, MICs 4–8 µg/mL) and 68 (69.4%) high-level resis-
tance (HL-CipR, MICs 16–128 μg/mL) (Table 1). By age 
group, the prevalence of CipR was 0.14% (2/1,400) among 
isolates from pediatric patients (<15 years of age) and 
3.6% (96/2,682) among isolates from adult patients. Resis-
tance was higher among noninvasive pneumococci (3.3%, 
70/2,114) than among invasive isolates (1.3%, 28/2,101, 
p<0.001). The highest rate of Cip resistance was found for 
isolates from adults >64 years of age (Table 1). All HL-CipR 
isolates were from adult patients; most (53/68, 77.9%) were 
isolated from sputum. CipR isolates showed high rates of re-
sistance to antimicrobial drugs. However, these rates were 
lower than those found in the 2002 study (Table 1).

The parC, parE, and gyrA QRDRs of the 98 CipR 
isolates were characterized. Most CipR isolates (93/98) 
showed low nucleotide sequence variations (<1%) in their 
QRDRs, but 5 isolates showed high variations (>4%). Four 
of them were in parC, parE, and gyrA, and only 1 was in 
gyrA. These results suggest an interspecific recombinant or-
igin for these genes. In accordance, all isolates with recom-
binant parE and parC genes carried the ant gene, typical of 
the S. mitis group (4), as shown by PCR amplification.

Twenty-one of the 98 isolates had efflux for Cip; 3 of 
them also had efflux for levofloxacin (Tables 2, 3), and none 
had efflux for moxifloxacin. Efflux was equally distributed 
among LL-CipR and HL-CipR isolates. The contribution 
of the efflux mechanism to resistance in those isolates is 
unclear. Mutations not previously described that produced 
changes in parC (D78N, S80P, D83E), parE (I476F), and 
gyrA (G79A, S81V, E85G, V101I) were found in 8 iso-
lates. To test the contribution of these changes to resistance, 
transformation experiments using strains R6 or T1 (as R6, 
parC S79F) as receptors of parC or gyrA QRDRs, respec-
tively, were performed. The QRDRs of several indepen-
dent transformants were sequenced to confirm the presence 
of the same mutation in the donor DNA and MICs of these 
transformants were determined. Although no transforma-
tion was achieved with PCR products carrying parC D78N 
or parE I476F, transformation to increased resistance was 
observed with products carrying parC S80P, gyrA S81V, 
and gyrA E85G changes (Table 2).

Three of these changes were accompanied by other 
changes known to be involved in resistance: gyrA G79A 
with S81F; parC D83E with S79F, and gyrA V101I with 
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S81F. Among 5 T1 transformants obtained with a gyrA 
QRDR carrying G79A and S81F, 4 carried G79A and 
S81F and only 1 carried S81F. Because all transformants 
had identical Cip MICs, results suggest that G79A is not in-
volved in drug resistance. We could not discern the role of 

parC D83E and gyrA S81F in resistance, given that all R6-
transformants had parC D83E and S79F and all T1 trans-
formants had gyrA V101I and S81F. However, given the 
contribution to resistance of the accompanied mutations, 
their role in resistance is unlikely.
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Table 1. Comparison of 2 surveillance studies on ciprofloxacin-resistant Streptococcus pneumoniae isolates in Spain, 2002 and 2006* 
No. ciproflaxin resistant/no. isolates (%) 

Characteristic 2002 2006 p value 
Ciproflaxin resistance 
 Global 75/2,882 (2.6) 98/4,215 (2.3) NS
 Low-level (MICs 4–8 g/mL) 14/75 (18.7) 30/98 (30.6) NS
 High-level (MICs >16 g/mL) 61/75 (81.3) 68/98 (69.4) NS
 In persons <15 years of age 0/978 (0) 2/1,446 (0.14) NS
 In persons 15–64 years of age 22/1,166 (1.9) 34/1,455 (2.3) NS
 In persons >64 years of age 53/738 (7.2) 62/1,314 (4.7) 0.02
 PCV7 serotypes 49/75 (65.3) 35/98 (35.7) <0.001
Other antimicrobial drug resistance No. resistant/no. ciproflaxin-resistant isolates (%) 
 Penicillin MIC >0.12 g/mL 55/75 (73.3) 44/98 (44.9) <0.001
 Erythromycin MIC >0.5 g/mL 53/75 (70.7) 53/98 (54.1) 0.03
 Clindamycin MIC >1 g/mL 47/75 (62.7) 45/98 (45.9) 0.03
 Chloramphenicol MIC >8 g/mL 33/75 (44.0) 11/98 (11.2) <0.001
 Tetracycline MIC >4 g/mL 52/75 (69.3) 39/98 (39.8) <0.001
 Cotrimoxazole MIC >4/76 g/mL† 51/75 (68.0) 47/98 (47.8) 0.008
Multidrug resistance (>3 drugs) 55/75 (73.3) 48/98 (49.0) <0.001
*NS, not significant; PCV7, 7-valent conjugate pneumococcal vaccine. Ciproflaxin resistance is defined by Chen et al. (30) as an MIC >4 g/mL.
†MIC is 4 g/mL for trimethoprim and 76 g/mL for sulfamethoxazole. 

Table 2. Fluoroquinolone MICs of 30 low-level resistant Streptococcus pneumoniae isolates and 5 laboratory strains and amino acid 
changes in their DNA topoisomerase IV and gyrase genes, Spain, 2006* 

Amino acid substitution 
parC parE gyrA MIC, g/mL No.

isolates S79 S80 D83 D435 E474 S81 E85 CIP LVX MXF
Efflux

phenotype† 
1 – – – – – – – 4 1 0.12 None
3 – – – – – – – 4–8 2 0.5 CIP
1 –‡ –‡ –‡ –‡ –‡ –‡ –‡ 8 4 0.5 CIP
9 F – – – – – – 48 12 0.250.50 None
3 F – – – – – – 48 2 0.120.25 CIP
1 F – – – – –‡ –‡ 8 1 0.12 None
1 F‡ –‡* –‡ –‡ –‡ –‡ –‡ 8 2 0.12 CIP, LVX 
5 Y – – – – – – 48 2 0.120.25 None
1 Y – – – – – – 4 2 0.25 CIP
1 – – N – – – – 16 4 0.5 None
1 – – N – – – – 4 2 0.12 CIP
1 – – Y – – – – 4 1 0.5 None
1 – – Y – – – – 8 2 0.5 CIP
1 – – – N – – – 8 2 0.12 None
Laboratory strains§ 
R6 0.5 0.25 0.12 None
R6CS80P – P – – – – – 2 1 0.25 None
T1 F – – – – – – 4 2 0.12 None
T1AS81V F – – – – V – 32 32 4 None
T1AE85G F – – – – – G 32 8 2 None
*par, topoisomerase gene; gyr, gyrase gene; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin. Only changes involved in resistance are shown. –, 
no change. Additional amino acid changes not involved in resistance were parC D78N (1 isolate), parC K137 N (9), parC N91D (2 with mosaic parC
genes), parE I460V (17), parE I476F (1), gyrA S114G (2 with mosaic gyrA genes), and gyrA N150H (1 with a mosaic gyrA gene). 
†An isolate was considered to have an efflux phenotype for the indicated fluoroquinolone when a >2-fold decrease in its MIC in the presence of reserpine 
was observed. 
‡Indicates that the residue is located in a recombinant gene. 
§R6CS80P, R6 derivative carrying parC S80P; T1AS81V, T1-derivative carrying gyrA S81V; T1AE85G, T1-derivative carrying gyrA E85K. 
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The contribution of classical and new mutations to Cip 
resistance described here enabled us to classify resistant 
isolates (Tables 2, 3). Five LL-CipR isolates did not show 
changes involved in resistance in their parC, parE, or gyrA 
QRDRs, including 1 with recombinant genes (Table 2). 
Four of them showed a reserpine-sensitive efflux pheno-
type for Cip (Table 2) as a single mechanism of resistance. 
Among the remaining 25 LL-CipR isolates, 24 had muta-
tions producing changes at parC, and 1 isolate had a single 
change at parE. Among 68 HL-CipR isolates, 55 (80.9%) 
had double changes (51 in parC and gyrA and 4 in parE and 
gyrA), and 13 (19.1%) had triple mutations (7 had 2 chang-
es in parC and 1 change in gyrA; 4 had 1 change in parC, 
1 change in parE, and 1 change in gyrA; 2 had 1 change in 
parC and 2 changes in gyrA). According to Clinical and 
Laboratory Standards Institute guidelines (22), only 3 of 
the 30 LL-CipR isolates showed intermediate resistance to 

levofloxacin (MIC 4 µg/mL), and the remaining 27 isolates 
were susceptible to levofloxacin; all were susceptible to 
moxifloxacin. HL-CipR isolates showed resistance (n = 66) 
or intermediate resistance (n = 2) to levofloxacin. Five HL-
CipR isolates were susceptible to moxifloxacin, 11 showed 
intermediate resistance, and 52 were resistant.

Serotype and genotype distributions of CipR isolates 
of 2002 (24) and 2006 were compared (Figure). Although 
isolates from 2006 belonged to 29 different serotypes, 5 
serotypes (14, 9V, 8, 19A, and 6B) accounted for 44.9% of 
the total. The rate of PCV7 serotypes among CipR isolates 
decreased (p<0.001) in 2006 (Table 1) because of a decrease 
in serotypes 23F, 19F, and 6B (Figure, panel A). Forty-
nine genotypes were observed among the 98 CipR isolates 
(Figure, panel B). Clones Spain9V-ST156 (21 isolates) and 
Sweden15A-ST63 (13 isolates) accounted for 34.7% of the 
CipR isolates. Capsular switch events were frequent in 
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Table 3. Fluoroquinolone MICs of 68 high-level resistant Streptococcus pneumoniae isolates and amino acid changes in their DNA 
topoisomerase IV and gyrase genes, Spain, 2006* 

Amino acid substitution 
parC parE gyrA MIC, g/mL No.

isolates S79 S80 D83 D435 E474 S81 E85 CIP LVX MXF
Efflux

phenotype† 
4 F – – – – F – 64 1632 4 CIP
21 F – – – – F – 32128 1632 28 None
1 F – – – – L – 64 32 2 None
1 F – – – – V – 64 32 4 CIP
3 F – – – – Y – 64128 1632 4 None
1 F – – – – – G 32 16 4 None
2 F – – – – – K 3264 1632 2–4 None
1 Y‡ –‡ –‡ –‡ –‡ F‡ –‡ 64 32 4 None
8 Y – – – – F – 3264 1632 2–4 None
1 Y – – – – F – 64 32 4 CIP, LVX
1 Y – – – – Y – 64 32 4 None
1 Y – – – – – K 32 16 2 None
1 – P – – – F – 16 4 0.5 None
1 – – H – – F – 32 16 2 CIP
1 – – Y – – F – 32 16 2 CIP
2 – – Y – – F – 32 816 2–4 None
1 – – N – – – K 16 8 2 None
3 – – – N – F – 16 8 0.52 None
1 –‡ –‡ –‡ N‡ –‡ F‡ –‡ 16 4 0.5 CIP
1 F – G – – F – 64 32 4 CIP, LVX
2 F – G – – F – 32–64 32 4 None
1 F – G – – L – 64 64 16 None
1 F – H – – F – 64 32 4 None
2 F – N – – F – 3264 1632 4 None
2 F – – N – F – 64128 32128 432 None
1 F – – N – – K 16 32 4 None
1 F – – – K F – 64 32 4 None
1 F – – – – F A 64 16 4 None
1 F – – – – F K 32 32 4 None
*par, topoisomerase gene; gyr, gyrase gene; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin. Only changes involved in resistance are shown. –, 
no change. Additional amino acid changes not involved in resistance were parC D83E (1), parC K137 N (24), parC N91D (2 with mosaic parC genes), 
parE I460V (47), and gyrA S114G (2 with mosaic gyrA genes). 
†An isolate was considered to have an efflux phenotype for the indicated fluoroquinolone when a >2-fold decrease in its MIC in the presence of reserpine 
was observed. 
‡Indicates that the residue is located in a recombinant gene. 
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these clones (Figure): Spain9V-ST156 (12 switches) and 
Sweden15A-ST63 (11 switches). Four new genotypes re-
lated to non-PCV7 serotypes, (ST9710A, ST57016, ST43322, 
ST71733, each represented by 3 isolates) emerged in 2006 
(Figure, panel B).

As we observed, isolates that shared the same PFGE 
pattern also shared identical polymorphisms on their DNA 
topoisomerase QRDRs. All but 1 of the isolates belonging 
to the Spain9V-ST156 clone had identical polymorphisms, 
the same found in the ATCC 700671 strain representative 
of this clone (15); the only exception was an isolate with 
parC, parE, and gyrA recombinant genes.

Discussion
We observed a stabilization during 2002–2006 in the 

rates of fluoroquinolone resistance in Spain. Although the 
rate of Cip resistance in 2002 was 2.6% (2.2% for levo-

floxacin), it was 2.3% (1.7% for levofloxacin) in 2006. 
The rates of Cip resistance were also similar for the dif-
ferent age groups (3.5% for adults and 0.14% for children 
in 2006). However, a decrease in the rate of resistance in 
persons >64 years of age was found in 2006. Higher levels 
of resistance were found in S. pneumoniae isolated from 
sputa and in isolates from people >64 years of age, who 
more frequently have chronic obstructive pulmonary dis-
ease and who have been treated with multiple regimens of 
antimicrobial drugs. In accordance, development of fluoro-
quinolone resistance has been reported for  these patients 
(31–33). The frequency of HL-CipR resistance in adults 
was 2.5% (68/2,769), slightly higher than that reported for 
persons in other countries in Europe (34).

Four factors may have contributed to the observed 
stabilization of resistance rates. These factors are fluoro-
quinolone use, change in circulating clones, no recommen-
dation of fluoroquinolones for children, and fitness cost of 
resistance mutations.

A direct correlation between use of fluoroquinolone 
and prevalence of resistance in S. pneumoniae has been 
described (30,35). Cip use in Spain has remained stable 
since 1997 at 1.1 defined daily doses (DDDs)/1,000 inhab-
itants-days, whereas that of levofloxacin and moxifloxacin 
increased during 2002–2006 (from 0.2 to 0.4 DDDs/1,000 
inhabitants-days for levofloxacin and from 0.3 to 0.4 
DDDs/1,000 inhabitants-days for moxifloxacin, Agencia 
Española de Medicamentos, Madrid, Spain; http//agemed.
es). Because the borderline activity of Cip against S. pneu-
moniae favors acquisition of first-step parC mutations 
(15,36), we expected that the greater activity of levofloxa-
cin and moxifloxacin would not favor the appearance of 
resistance, even if one considered their increased use. 

Regarding circulating pneumococcal clones, the rate 
of PCV7 serotypes among CipR isolates decreased from 
65.3% in 2002 to 35.7% in 2006 (p<0.001). The same 
finding was found among CipR isolates from adults >64 
years of age (7.2% in 2002 to 4.7% in 2006; p<0.02) and 
was probably caused by decreased transmission of pneu-
mococci from vaccinated children to adults (37). Conse-
quently, we have observed a decrease in 4 multidrug-re-
sistant clones (Spain23F-ST81, Spain6B-ST90, Spain14-ST17, 
and ST8819F) related to PCV7-serotypes. In addition, new 
clones (ST6211, ST9710A, ST57016, ST43322, and ST71733) 
related to non-PCV7 serotypes emerged in 2006. These 
changes are consistent with those observed among invasive 
pneumococci after the introduction of PCV7 in Spain in 
June 2001 (38). At present, 2 clones, Spain9V-3-ST156 and 
Sweden15A-ST63, could be considered as the major con-
tributors to Cip resistance in Spain, accounting for 34.7% 
of CipR strains.

Fluoroquinolones are not recommended for children, 
who are the major reservoir of pneumococci. If fluoroqui-
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Figure. Serotype (A) and genotype (B) distributions of ciprofloxacin-
resistant pneumococci isolated in Spain, 2002 and 2006. A total of 
75 isolates from 2002 (black columns) and 98 from 2006 (white 
columns) were compared. Asterisks indicate significant differences 
(p<0.05) between the 2 years. PCV7, 7-valent conjugate 
pneumococcal vaccine. Baseline numbers in B indicate various 
genotypes. 1, Spain6B-ST90; 2, Spain9V-ST156; 3, Spain14-ST17; 4, 
Netherlands18C-ST113; 5, ST8819F; 6, Spain23F-ST81; 7, Netherlands3-
ST180; 8, ST2603; 9, ST9710A; 10, ST6211A; 11, Sweden15A-ST63; 
12, ST57016; 13, TS43322; 14, ST71733; 15, other.
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nolones are given to children, according to recent reports 
of their safety for such use (39), increased prevalence of 
resistance might occur. 

Regarding fitness cost of CipR mutations in S. pneu-
moniae, CipR isolates were divided into 3 groups. The first 
group is composed of 5 isolates without QRDR resistance 
mutations. Four isolates had a reserpine efflux phenotype. 
The fifth isolate may have had a different efflux inhibitor 
or an unknown resistance mechanism. The second group 
is composed of  25 LL-CipR isolates with single changes 
at topo IV, whose distribution, 24 at parC and 1 at parE 
(D435N), is consistent with the low-fitness cost of parC 
changes (25) and the high-fitness cost of the parE D435N 
change (40). The third group is composed of 68 HL-CipR 
isolates with gyrA changes associated with topo IV chang-
es. GyrA changes mainly occurred at S81 (62/68), whereas 
changes at E85 were rare (8/68) because of the high-fitness 
cost of E85 changes (25).

The frequency of CipR recombinants in 2006 re-
mained low (5.1%, 5/98 CipR isolates), similar to that in 
2002 (6.7%) and that reported previously (3,4). Four iso-
lates with mosaic parE-parC genes and long intergenic 
regions (4–6 kb) containing the ant gene probably origi-
nated by recombination with the S. mitis group (4). One 
of them belongs to the Spain9V-ST156 clone and was not 
typeable. The predominance of this clone and the fact that 
the recombinant parE-ant-parC structure did not impose a 
fitness cost (25) suggest recombinants could become more 
prevalent in the future.
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