Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 15, Number 8—August 2009

Research

Bordetella pertussis Strains with Increased Toxin Production Associated with Pertussis Resurgence

Frits R. MooiComments to Author , Inge H.M. van Loo, Marjolein van Gent, Qiushui He, Marieke J. Bart, Kees J. Heuvelman, Sabine C. de Greeff, Dimitri Diavatopoulos, Peter Teunis, Nico Nagelkerke, and Jussi Mertsola
Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (F.R. Mooi, M. van Gent, M.J. Bart, K.J. Heuvelman, S.C. de Greeff, D. Diavatopoulos, P. Teunis); Maastricht University Hospital, Maastricht, the Netherlands (I.H.M. van Loo); National Public Health Institute, Turku, Finland (Q. He); United Arab Emirates University, Al Ain, United Arab Emirates (N. Nagelkerke); University of Turku, Turku (J. Mertsola)

Main Article

Figure 1

Alleles of pertussis toxin promoter (ptxP) observed worldwide. Bases are numbered –173 to +27 relative to the start of transcription (+1). The region to which 6 dimers of BvgA, the global regulator of B. pertussis virulence genes, bind is shaded. The –10 sequence motif and initiation codon are underlined. The DNA region –370 to –174, not shown here, was devoid of polymorphism. Locations of transcriptional signals and BvgA bindings sites are based on Bartoloni et al. (16).

Figure 1. Alleles of pertussis toxin promoter (ptxP) observed worldwide. Bases are numbered –173 to +27 relative to the start of transcription (+1). The region to which 6 dimers of BvgA, the global regulator of B. pertussis virulence genes, bind is shaded. The –10 sequence motif and initiation codon are underlined. The DNA region –370 to –174, not shown here, was devoid of polymorphism. Locations of transcriptional signals and BvgA bindings sites are based on Bartoloni et al. (16).

Main Article

TOP