Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 15, Number 9—September 2009

Dispatch

Highly Pathogenic Avian Influenza Virus A (H7N3) in Domestic Poultry, Saskatchewan, Canada, 2007

Yohannes Berhane, Tamiko Hisanaga, Helen Kehler, James Neufeld, Lisa Manning, Connie Argue, Katherine Handel, Kathleen Hooper-McGrevy, Marilyn Jonas, John Robinson, Robert G. Webster, and John PasickComments to Author 
Author affiliations: Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada (Y. Berhane, T. Hisanaga, H. Kehler, J. Neufeld, L. Manning, C. Argue, K. Handel, K. Hooper-McGrevy, J. Pasick); Prairie Diagnostic Services, Saskatoon, Saskatchewan, Canada (M. Jonas); British Columbia Ministry of Agriculture and Lands, Abbotsford, British Columbia, Canada (J. Robinson); St. Jude Children’s Research Hospital, Memphis, Tennessee, USA (R.G. Webster)

Main Article

Figure 2

Phyogenetic analysis of avian influenza virus H7 (A) and N3 (B) genes. Trees were generated with MEGA software (8) by using the neighbor-joining method (9). Evolutionary distances were computed by using the method of Nei and Gojobori (10). Percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. Scale bars indicate substitutions per site.

Figure 2. Phyogenetic analysis of avian influenza virus H7 (A) and N3 (B) genes. Trees were generated with MEGA software (8) by using the neighbor-joining method (9). Evolutionary distances were computed by using the method of Nei and Gojobori (10). Percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. Scale bars indicate substitutions per site.

Main Article

TOP