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Ramon (Mamore Province) belonged 
to lineage II. These isolates showed 
10% nucleotide difference within the 
S segment and a 6% amino acid dif-
ference within the glycoprotein pre-
cursor gene. Similar genetic diversity 
has been described with Machupo vi-
rus and other arenaviruses (2–4). Se-
quences generated were deposited in 
GenBank (accession nos. FJ696411, 
FJ696412, FJ696413, FJ696414, and 
FJ696415).

It is not known whether lineage 
VII and I viruses continue to circulate 
or have been replaced by lineage V 
and II viruses, respectively. This study 
confirms the long-term maintenance 
of distinct phylogenetically forms of 
Machupo virus in a small area within 
Beni. Although the distribution of 
the Machupo virus rodent reservoir 
(Calomys callosus) extends beyond 
the geographic area of the Machupo 
cases described, factors that limit the 
endemic distribution of the virus re-
main unknown. However, population 
differences among C. callosus may 
account for the natural nidality of 
BHF (5). Studies are needed to fully 
identify and understand the ecology 
of the rodent reservoir and Machupo 
virus transmission.

Machupo virus continues to cause 
sporadic cases and focal outbreaks 
of BHF in Bolivia. We describe 5 
confirmed human cases (3 fatal) of 
Machupo virus infection in Beni De-
partment, Bolivia, an area in which 
BHF is endemic. That all 5 patients 
were farmers suggests their infections 
were probably acquired through oc-
cupational exposure. Although all the 
patients received plasma transfusion 
from patients who had survived BHF 
infection, 3 patients still died. An early 
diagnosis and the rapid administration 
of Machupo immune plasma before 
the hemorrhagic phase may increase 
the chance of survival, as has been 
observed with other arenavirus infec-
tions (6–8). 
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Relapsing Fever 
Spirochete in  

Seabird Tick, Japan
To the Editor: Tick-borne relaps-

ing fever (TBRF) is caused by infec-
tion with spirochetes belonging to 
the genus Borrelia. We previously re-
ported a human case of febrile illness 
suspected to be TBRF on the basis 
of serologic examination results; the 
vector most likely was a genus Carios 
tick that had fed on a seabird colony 
(1). However, surveillance of ticks in 
the area did not identify Borrelia spp. 
in any of the Carios ticks sampled (2). 
In 2007 and 2008, a borreliosis inves-
tigation was conducted on Kutsujima 
Island (35.71′N, 135.44′E) because 
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a bird-associated tick, genus Carios, 
inhabits this island. During the inves-
tigation, 77 Carios ticks (55 nymphs, 
11 adult males, and 11 adult females) 
were collected from colonies of sea-
birds: Swinhoe’s storm petrel (Ocean-
odroma monorhis) and streaked 
shearwater (Calonectris leucomelas). 
Identification of tick species as C. 
sawaii was based on tick morphol-
ogy and rrs gene sequence analysis of 
the tick mitochondrion DNA (2). To-
tal DNA was extracted from the ticks 
by using a DNeasy Tissue Kit (QIA-
GEN, Germantown, MD, USA). For 
the detection of Borrelia DNA, PCR 
designed was based on the flagellin 
gene (flaB) according to Sato et al. (3). 
To check for contamination and am-
plicon carryover, we used blank tubes 
as a negative control for each experi-
ment. Of 77 C. sawaii ticks that were 
positive by PCR of tick genes (2), 25 
(14 nymphs, 6 adult males, 5 adult 
females) were positive for Borrelia 
DNA by PCR of flaB.

To characterize the Borrelia spp., 
we sequenced amplified fragments 
of the flaB gene and the 16S ribo-
somal RNA (16SrRNA) gene of Bor-
relia spp. in a tick and compared the 
results with those of representative 
Borrelia spp. The primers BflaPBU 
and BflaPCR (3) for flaB and the 4 
PCR primers (online Technical Ap-
pendix, available from www.cdc.
gov/EID/content/15/9/1528-Techapp.
pdf) for 16SrRNA were used for di-
rect sequencing and/or amplification. 
DNA sequence (GenBank accession 
no. AB491928) of a 294-bp ampli-
fied fragment of flaB showed the fol-
lowing nucleotide similarities with 
those of Borrelia spp.: B. turicatae 
(98.98%), B. parkeri (98.30%), Bor-
relia sp. Carios spiro-1 (98.64%), and 
Borrelia sp. Carios spiro-2 (98.30%). 
DNA sequence (GenBank accession 
no. AB491930) of a 1,490-bp ampli-
fied fragment of 16SrRNA showed the 
following nucleotide similarities with 
those of Borrelia spp.: B. turicatae 
(99.60%), B. parkeri (99.53%), and 

Borrelia sp. Carios spiro-2 (99.45%). 
Borrelia sp. Carios spiro-1 and Carios 
spiro-2, which were recently identified 
in C. kelleyi in the United States, have 
been classified into TBRF Borrelia 
(4,5). The Borrelia sp. found in this 
study, designated as Borrelia sp. K64, 
was closely related to B. turicatae but 
was distinct from other TBRF Borre-
lia spp. (online Technical Appendix).

To observe Borrelia spp. in tick 
tissues, we performed an indirect 
fluorescence assay (IFA) according 
to methods described by Fisher et al. 
(6), with minor modifications. A tick 
that was negative by PCRs of flab and 
16SrRNA was used as a negative con-
trol. The IFA of the tick salivary gland 
and midgut was conducted by using 
acetone for fixation, goat anti-Borrelia 
sp. polyclonal immunoglobulin (Ig) G 
(1:100; KPL, Inc., Gaithersburg, MD, 
USA) as the primary antibody, and Al-
exa fluor 488-labeled rabbit antigoat 
IgG (1:200, Invitrogen, Carlsbad, CA, 
USA) as the secondary antibody. Our 
analysis showed a spirochete, which 
was stained by anti-Borrelia spp. an-
tibody, in salivary gland and midgut 
tissue (online Technical Appendix). 
However, no spirochetes were detect-
ed by IFA in the negative control (data 
not shown).

We also attempted to isolate Bor-
relia spp. from tick specimens by us-
ing Barbour-Stoenner-Kelly medium 
(7). The motility of Borrelia-like or-
ganisms in the medium was initially 
observed by using dark-field micros-
copy. The Borrelia-like organisms 
were identified as Borrelia sp. K64 
by sequencing of PCR-amplified frag-
ments of flaB and 16SrRNA genes 
from the cultured medium. However, 
these Borrelia organisms were found 
for only 2 weeks after inoculation 
(data not shown).

The vertebrate reservoir hosts 
of TBRF Borrelia are usually ro-
dents but can be a variety of other 
animals (8). Although competence as 
a reservoir has not been determined 
for birds, infection of an owl with a 

TBRF Borrelia sp. has been reported 
(9). The vertebrate host of the spiro-
chete has not yet been determined. 
Given our results, it is possible that 
seabirds are potential vertebrate hosts 
for Borrelia spp. 

In Japan, relapsing fever is a ne-
glected infectious disease because it 
was not reported during 1956–1998 
(10). In this study, we detected a Bor-
relia sp. in C. sawaii, and the spiro-
chete we characterized is closely 
related to B. turicatae. Although the 
human health implications of infec-
tions caused by Borrelia spp. are not 
yet known, the findings from this study 
should contribute to the epidemiologic 
investigation of TBRF in Japan. 
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Backyard Raccoon 
Latrines and Risk 
for Baylisascaris 

procyonis  
Transmission to  

Humans
To the Editor: Raccoons (Pro-

cyon lotor) are abundant in urban en-
vironments and carry a variety of dis-
eases that threaten domestic animals 
(1) and humans (2,3). A ubiquitous 
parasite of raccoons, Baylisascaris 
procyonis causes a widely recognized 
emerging zoonosis, baylisascariasis 
(3). Although only 14 human cases 
of severe B. procyonis encephalitis 
have been reported over 30 years (4), 
prevention is still a priority for public 
health and wildlife officials because of 
the seriousness of the resulting neuro-
logic disease (5).

Raccoons prefer to defecate at 
latrines they create. Infected animals 
shed ≈20,000 eggs/g of feces (3), so 
latrines serve as the foci of parasite 
transmission (6). When latrines occur 
in close proximity to humans, the risk 
for zoonotic transmission increases 
(2). Because B. procyonis are transmit-
ted by the fecal–oral route, young chil-
dren have the greatest risk for zoonot-
ic infection because of their tendency 
to put objects into their mouths (1,2). 
Many human cases have occurred in 
environments where latrines were near 
children’s play areas. Our objective 
was to determine which factors en-
courage raccoons to create latrines in 
human habitats. This information will 
allow public health officials and wild-
life managers to develop strategies to 
educate the public and to ultimately 
prevent zoonotic transmission.

We surveyed 119 backyards 
for raccoon latrines in the suburbs 
of Chicago, Illinois, USA, near the 
Ned Brown Forest Preserve (n = 38; 
42°01′55.05′′N, 88°00′00.62′′W, Cook 
County) and Lincoln Marsh (n = 81; 
41°51′4.54′′N, 88°5′39.019′′W, Du-

Page County). Yards were selected on 
the basis of proximity to forest pre-
serves and willingness of homeowners 
to participate in the study. We located 
latrines by systematically search-
ing yards, giving special attention to 
horizontal substrates, such as piles of 
wood  and the bases of large trees (6). 
We removed all fecal material to test 
for B. procyonis and stored it in plas-
tic bags at –20oC until analysis. Com-
posite samples that were at least 2 g 
underwent fecal flotation in Sheather 
solution (7) (at least 1 g of every fe-
cal deposit at a latrine) (n =131). We 
identified B. procyonis eggs by mi-
croscopic examination on the basis of 
their size and morphologic appearance 
(2). Multiple slides were examined for 
≈10% of the samples (randomly se-
lected) to validate our results. Preva-
lence was considered the proportion 
of positive samples from all sampled 
yards.

Each yard was additionally sur-
veyed for potential latrine substrates 
(8) and factors believed to attract or 
deter raccoons. The distance of each 
yard from the nearest forested habitat 
was calculated by using ArcGIS 9.0 
(Geographic Information Systems, 
Redlands, CA, USA). We used homo-
geneity tests to identify differences in 
the proportion of yards with latrines 
present and to compare the prevalence 
of B. procyonis between study areas. 
Logistic regression and odds ratios 
were used to evaluate a main effect 
model composed of 10 yard attributes, 
including the presence of a pet, bird-
feeders, garbage cans, and sandboxes, 
and to evaluate a simplified model in 
which attributes were combined to re-
flect the presence of food and latrine 
substrates, such as pet food, birdfeed, 
garbage and piles of wood or logs,  
respectively.

Latrines occurred in 61/119 yards 
(51%; 95% confidence interval [CI] 
0.42%–0.60%). There was no signifi-
cant difference in the proportion of 
backyards with latrines in proximity 
to Ned Brown (23/38, 82%) and Lin-
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