
  

Cost-effectiveness of Pharmaceutical-
based Pandemic Influenza Mitigation 

Strategies  

Technical Appendix 1. Description of the transmission model 

Model structure 

The model was structured as a set of “Susceptible, Exposed, Infected, Removed” (SEIR)-

type deterministic differential equations: 
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The states are vector structures containing 12 elements representing 3 possible vaccination 

groups (no-vaccine (i=1), pre-vaccine and matched vaccine (i=2) or matched vaccine only (i=3)) 

and 3 population groups (0-19 years (j=1), 20-64 years (j=2), and 65+ (j=3)). Susceptible states, 

for example, can be written as Sij, i,j=1..3. The parameters ω and γ were fixed constants 

representing the rate of progression from exposure to becoming infectious and the rate of 

recovery from infection respectively. Births and deaths were assumed to make a negligible 

contribution over the time-scale of the epidemic. We also assumed that there are a growing 

number of imported cases during the early stages of the pandemic (discussed below). See 

Appendix 2 for parameter values and ranges. 

The force of infection vector λ
r

was dependent on several time-dependent factors 

including the prevalence of infection and the timing of vaccination programs. We defined 

NI /ˆrr
βλ = , where  is the who-acquires-infection-from-whom (WAIFW) matrix and N was the β̂
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population size. The mixing between population groups without considering interventions was 

defined as: 
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Mixing Matrix 

The matrix was calculated using data from a recent POLYMOD survey of contacts 

conducted in the European Union (1). In order to construct our matrix, we first calculated the 

(unweighted) average of the matrices for close contacts over all countries. We then reduced this 

to a 3x3 matrix describing contacts between 0-19, 20-64 and 65+ age groups by taking the 

average over the relevant sub-matrices. This involves some loss of fidelity, as the POLYMOD 

data is stratified into 5 year age bands for individuals under 70 years of age. The base-case 

contact matrix is then given by 
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which involves a scaling factor R0/M , so that the the next generation matrix R has maximum 

eigenvalue of R0: 
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 Here πi is the proportion of the population in the ith age class. The final mixing matrix 

involving pharmaceutical effects is expressed as the element by element matrix product 

 , where  incorporates vaccine effects and  incorporates antiviral effects. avββ ˆˆ = β̂*. vβ̂ aβ̂

Clinical attack rates 

Clinical attack rates (CARs) are calculated in the model as the percentage of the 

population who became infected during the course of the epidemic multiplied by the proportion 

of infections that are clinical (50% in base-case). CARs are sensitive to the structure of the 

mixing matrix – the assortative nature of mixing predicted by the POLYMOD data (1) means 
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that attack rates for a given R0 are lower than if mixing is uniform. In Table S1 below, we 

compare base-case population CARs from the above mixing matrix and a uniform mixing matrix 

by strategy. In all cases the attack rate is higher under the assumption of uniform mixing with the 

largest difference in both absolute and relative terms occurring for whole of population pre-

pandemic vaccination strategies. However, by using broad age classes we have underestimated 

the level of assortativity in mixing, so it is likely that our base-case matrix underestimates the 

protective effect of the intervention. 

Table: Comparison of Clinical attack rates (CARs) derived from the base-case mixing matrix with those from a uniform mixing matrix 
Strategy CAR (base-case matrix) CAR (uniform matrix) 
Strategy 1(2) 31.1% 34.56% 
Strategy 3(4) 5.53% 12.14% 

Effect of the vaccine 

The vaccine was assumed to reduce susceptibility only (with no further impact on disease 

or infectiousness of breakthrough cases), while antiviral prophylaxis was assumed to be both 

protective against infection and to reduce infectiousness of individuals with breakthrough 

infection. Full efficacy is achieved 21 days after vaccination with protection rising along a 

logistic curve in between vaccination and this time point. This process is repeated for each dose 

and protection is assumed not to wane. The efficacy of the vaccine in those over 65 years of age 

was assumed to halve the efficacy in the younger age-groups. The base-case evolution of vaccine 

efficacy is shown in the Figure. 

Figure. Schematic of vaccine efficacy over time in base-case analysis 
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Delivery of the vaccine to the target population is assumed to occur instantaneously. In practice, 

this means the interpretation of vaccine timing should be as the midpoint of the vaccination 

campaign (i.e. when vaccine has reached 50% of the target group). Doses of the pre-pandemic or 

matched vaccines are given 21 days apart. 

Effect of antiviral drugs 

Antiviral drugs were used for both treatment and prophylaxis, with treatment assumed to 

affect only the risk of hospitalisation and death following infection (but not the infectiousness of 

a treated case), whereas prophylaxis was assumed to reduce the risk of infection and the 

infectiousness of breakthrough cases. We made no distinction between pre and post exposure 

prophylaxis in terms of efficacy. However, it was assumed that only a limited proportion of case 

contacts (30% in base-case) would receive prophylaxis in time to achieve an effect. We assumed 

there was no difference in efficacy by age or vaccination status. 

The effectiveness of antiviral drugs was reduced by the presence of resistant virus. A 

constant level of resistance was applied (10% in base-case) and antiviral drugs were assumed to 

have no efficacy against resistant virus. This approach ignores the likely dynamic competition 

between resistant and sensitive strains explored elsewhere (2,3). 

Depletion of the antiviral drug stockpiles depended on what intervention the stockpile 

was used for. When used for post-exposure prophylaxis of case contacts, 100 antiviral drug 

courses were assumed to be dispensed for each symptomatic case; for treatment, one antiviral 

course was used for each treated case. The use of antiviral drugs for treatment and prophylaxis 

was in accordance with licensing guidelines. The distribution of antiviral drugs for prophylaxis is 

likely to over-estimate use but is based on the assumption that prophylaxis would be offered to a 

large number of people for each case identified at the start of an epidemic. This parameter has 

very little influence on model outcomes. 

Sub-clinical Infection 

In the base-case analysis we assumed that half of all infections were asymptomatic to 

mildly symptomatic (sub-clinical) and would not present to health care providers. This was 

varied in sensitivity analysis and was an influential variable since it directly affects the clinical 

attack rate. Infectiousness of sub-clinical cases was set to two-thirds of that of clinical cases 

(range 33%-100%) but was not an influential variable. 
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Imported Cases 

We assumed that imported cases would make an important contribution to the epidemic 

in the early stages. In the first week, cases were assumed to arrive at a rate of 1 per day, with this 

rate of importation doubling each week for 4 further weeks and then being sustained for a further 

5 weeks. 
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