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We demonstrate that the novel pandemic infl uenza 
(H1N1) viruses have human virus–like receptor specifi c-
ity and can no longer replicate in aquatic waterfowl, their 
historic natural reservoir. The biological properties of these 
viruses are consistent with those of their phylogenetic pro-
genitors, indicating longstanding adaptation to mammals.

In 2009, a new H1N1 infl uenza virus (pandemic [H1N1] 
2009) emerged in Mexico, spread to the United States 

(1), and subsequently caused the fi rst infl uenza pandemic of 
the 21st century (2). The emergence of pandemic (H1N1) 
2009 virus is imperfectly understood, but an early switch 
in hemagglutinin (HA) receptor specifi city is essential to 
allow interspecies transmission (3–5).

Pandemic (H1N1) 2009 virus strains were recently 
reported to be reassortants of the North American and Eu-
ropean swine lineages (6). Phylogenetic evidence suggests 
that this reassortment event occurred 10–17 years ago (7). 
These data suggest that the current pandemic (H1N1) 2009 
virus strains should have receptor specifi city typically found 
in the HA of mammalian viruses (Neu5Acα2,6Gal). In ad-
dition, they may have lost the ability to replicate in avian 

hosts, the natural reservoir species. To test these hypoth-
eses, we examined the biological properties of pandemic 
(H1N1) 2009 virus, including receptor specifi city, erythro-
cyte binding, and ability to replicate in avian species.

The Study
We fi rst tested species-specifi c erythrocyte ag-

glutination by the pandemic (H1N1) 2009 isolates A/
California/04/2009 and A/Tennessee/1-560/2009 and by 
other isolates from humans, swine, and birds (Table 1). The 
pandemic (H1N1) 2009 isolates showed reduced or absent 
agglutination of goose and chicken erythrocytes. Human 
and swine H1N1 viruses were agglutinated by turkey, guin-
ea pig, chicken, and goose erythrocytes, and all erythro-
cytes we tested except those of swine were agglutinated by 
avian isolates (Table 1).

We next measured the receptor binding of the 2 pan-
demic (H1N1) 2009 isolates to sialic substrates, both 
natural (fetuin) and synthetic (3′-sialyllactose [3′SL] and 
6′-sialyllactosamine [6′SLN] attached to a polyacrylic car-
rier) (Figure). The binding pattern to fetuin was identical 
among all isolates tested (association constant Kass ≈ 5.8 ± 
0.5, 1/μM sialic acid). The currently circulating human and 
pandemic infl uenza (H1N1) viruses showed a preference 
for 6′SLN and negligible binding to the avian-type 3′SL. 
A similar pattern was observed for 2 recent swine viruses, 
which bound only to 6′SLN receptors with nearly equal af-
fi nity as pandemic (H1N1) 2009 isolates. As expected, the 
2 avian H1 viruses bound strongly only to 3′SL (Figure).

To assess the infectivity and pathogenicity of pan-
demic (H1N1) 2009 virus strain A/California/04/2009 in 
terrestrial (chickens, quails) and aquatic (domestic and 
wild ducks) avian species, we inoculated 10 birds of each 
species by intranasal, intraocular, and intratracheal instilla-
tion with ≈106.0 of the 50% egg infectious dose (EID50) of 
the virus. We then observed the birds for the next 2 weeks 
for death and for viral shedding and signs of illness. No 
birds showed obvious clinical signs of disease. Virus was 
detected only on postinoculation day 1 in infected chickens 
and ducks and only in tracheal samples at low titers (<1.7 
log10 of the EID50/mL [8]) (Table 2). However, no later 
shedding of virus was observed, indicating that the virus 
detected on postinoculation day 1 could have been caused 
by residual virus particles after inoculation. In contrast, our 
results revealed that the A/California/04/2009 strain effi -
ciently infected quails with signifi cantly higher titers (<3.4 
log10 EID50/mL until postinoculation day 5; p<0.05) in both 
oropharyngeal and cloacal swab specimens (Table 2). The 
virus was detected in the trachea (1.7 log10 EID50/g), lungs 
(2.3 log10 EID50/g), and cecal tonsil (0.8 log10 EID50/g) of 
quails on postinoculation day 5.
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The potential bird-to-bird intraspecies transmission 
of the A/California/04/2009 pandemic (H1N1) 2009 virus 
strain in avian species was also examined by introducing 3 
contact birds to the inoculated birds’ cages on postinocula-
tion day 1. There was no subsequent evidence of viral shed-
ding through the upper respiratory tract or fecal-oral route 
in any group of birds except 1 of 3 contact quails (Table 
2). Oropharyngeal virus titers in this quail were l.7 and 1.5 
log10 EID50/mL on postinoculation days 3 and 5, indicating 
that productive viral replication was occurring.

Conclusions
The A/California/04/2009 pandemic (H1N1) 2009 vi-

rus strain showed minimal replication and no transmission 
in chickens and ducks (domestic and wild), but the virus 
replicated and had limited transmissibility in quails. Our 
fi nding is consistent with those of Swayne et al. (9). The 
inability of the virus to replicate effi ciently in chickens and 
ducks could very well be linked to its human virus–like 
receptor recognition.

The ability of infl uenza A viruses to agglutinate eryth-
rocytes from a variety of hosts may refl ect the viruses’ 
receptor specifi city (10,11). We observed similar binding 
patterns for the mammalian infl uenza (H1N1) viruses, with 
the exception that the pandemic strains had reduced bind-
ing to chicken erythrocytes. This binding pattern was also 
observed with 1 of the swine isolates, suggesting it might 
be a trait of swine-adapted viruses. Taken together, a dif-
ference in the hemadsorption phenotype observed with 
erythrocytes from species with either less Neu5Acα2,6Gal 
or less Neu5Ac linkage overall could be explained by the 
mammalian origin of the novel pandemic (H1N1) 2009 
infl uenza viruses.

To test this possibility, we measured the HA affi n-
ity of H1 infl uenza viruses from various species of origin 

for synthetic receptor analogues. All mammalian H1 vi-
ruses showed a typical human virus–like preference for 
the Neu5Acα2,6Gal-containing receptor 6′SLN. Compared 
with the currently circulating H1N1 human viruses, both 
pandemic (H1N1) 2009 strains and contemporary swine in-
fl uenza virus (H1N1) strains were able to bind substantially 
more strongly (5–12×) to an α2,6-containing glycopolymer; 
the currently circulating subtype H1N1 human viruses are 
strictly adapted to this receptor (12). This feature demon-
strated that pandemic H1N1 strains, which have a HA gene 
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Table 1. Erythrocyte agglutination by representative human, pandemic, swine, and avian H1 influenza virus isolates 
Hemagglutination titer of erythrocytes from indicated species, HAU*† 

Virus isolate Subtype Turkey‡ Guinea pig‡ Chicken§ Goose§ Horse¶ Swine# 
Human isolates        
 A/Brisbane/59/2007 H1N1 64 64 64 64 <2 <2 
 A/New Jersey/15/2007 H1N1 32 32 16 16 <2 <2 
Pandemic isolates        
 A/California/04/2009 H1N1 64 64 4 16 <2 <2 
 A/Tennessee/1-560/2009 H1N1 32 32 <2 8 <2 <2 
Swine isolates        
 A/swine/North Carolina/007270/2008 H1N1 32 64 8 16 <2 <2 
 A/swine/Iowa/003479/2009 H1N1 64 64 32 32 2 <2 
Avian isolates        
 A/mallard/Alberta/66/2007 H1N4 64 64 32 32 16 <2 
 A/mallard/Alberta/496/2008 H1N4 64 64 32 32 16 <2 
*HAU, hemagglutination units. 
†Titers are expressed as the reciprocal of the highest virus dilution that yields complete HA agglutination. 
‡Neu5Ac 2,6Gal > Neu5Ac 2,3Gal. 
§Neu5Ac 2,6Gal < Neu5Ac 2,3Gal. 
¶Neu5Gc2,3Gal. 
#Neu5Gc 2,6Gal > Neu5Gc 2,3Gal. 

Figure. Receptor specifi city of human, pandemic, swine, and 
avian H1 infl uenza viruses. Association constants (Kass, 1/μM sialic 
acid) of virus complexes with sialylglycopolymers conjugated to 
3′-sialyllactose (avian-like Neu5Acα2,3Gal-containing receptor, 
white bars) and 6′-sialyllactosamine (human-like Neu5Acα2,6Gal-
containing receptor, black bars). Higher Kass values indicate stronger 
binding. Values are the mean ± SD of 4 independent experiments 
(1/μM sialic acid). 1, A/Brisbane/59/2007; 2, A/New Jersey/15/2007; 
3, A/California/04/2009; 4, A/Tennessee/1-560/2009; 5, A/swine/
North Carolina/007270/2008; 6, A/swine/Iowa/003479/2009; 7, A/
mallard/Alberta/66/2007; 8, A/mallard/Alberta/496/2008.



of swine lineage, have retained their current swine virus–
like binding characteristics despite their effi cient spread in 
humans.

To identify substitutions in the HA molecule that 
could be responsible for the human-like receptor bind-
ing phenotype of the pandemic and contemporary swine 
infl uenza (H1N1) isolates, we compared the H1 HA se-
quences deposited in the Infl uenza Research Database 
(www.fl udb.org). We observed that 99.99% of all swine 
viruses isolated after 1980 have Asp190 or Asn190. HA 
sequences of swine viruses isolated before 2000 harbor 
Gly225, whereas 92.3% of more recent classical swine 
viruses have Asp225. Crystallographic analysis of human 
and swine H1 HA has shown that Asp225 and Asp190 are 
responsible for human virus–like receptor specifi city (13). 
Therefore, the human-like amino acids encoded at HA po-
sitions 190 and 225 in the novel pandemic and swine in-
fl uenza (H1N1) viruses may at least partially explain their 
innate affi nity for the human-type receptor.

Recent phylogenetic analysis showed that each seg-
ment of the pandemic (H1N1) 2009 virus is nested within 
a well-established swine infl uenza lineage for >10 years 
before the recent outbreak (7). Hence, the ancestors of this 
virus circulated undetected for about a decade before the 
virus emerged in humans. Our fi nding that contemporary 
swine viruses acquired the ability to recognize 6′SLN with 
at least 5-fold higher affi nity than did human strains and 
completely lost the ability to bind to Neu5Acα2,3Gal pro-
vides clear evidence to support this hypothesis. It is pos-
sible that the progenitors of pandemic (H1N1) 2009 virus 
were accumulating enough mammal-associated changes to 
allow a refi nement of their receptor-binding properties. Our 
fi ndings substantiate that strong mammalian-like receptor 
specifi city is a critical barrier to infection of various hosts 
with pandemic (H1N1) 2009 virus. Other biological fac-
tors associated with their adaptation and tissue tropism in 
humans will likely be identifi ed in the future.
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