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Foodborne Illness Acquired  
in the United States—Major Pathogens 

Technical Appendix 2 

Model Structures Used to Make Estimates 

Background 

Our choices for model structures were derived from a viewpoint about how to combine 

basic data on counts of illness, hospitalizations, and deaths with objective and subjective 

knowledge of the processes that might link those data to the true burden of illnesses, 

hospitalizations, and deaths. The following explanation describes our general approach and 

philosophy, and some of the key choices we made in assigning distributions. We started with the 

basic observation that the process of estimating the burden of foodborne illness requires using 

many disparate data sources and making subjective decisions about how to combine them. 

Therefore, we considered it important to take account of both statistical and non-statistical 

uncertainty. 

We chose the 4-parameter beta distribution as our basic descriptive distribution because it 

allowed us to specify a minimum, maximum, and modal value, as well a fourth parameter that 

controls the spread (variance) of the distribution within those limits. This family of distributions 

is widely used in problems of expert elicitation and risk assessment, particularly in the forms 

known as the PERT distribution and the Modified PERT distribution (1). (We use PERT to refer 

to both the PERT and Modified PERT distributions). Because of the intuitive nature of its inputs, 

it is an attractive choice for problems in which many estimates and sources of uncertainty need to 

be combined.  

Naturally, much of the source data for our estimates was in the form of counts. We found 

that using standard parametric distributions, such as the Poisson and Negative Binomial families, 

to describe our count data generally masked important features, such as left-skewness and 

multimodality. We decided to use nonparametric descriptions instead, and extended that choice 
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to other data, such as observed proportions, as indicated in online Technical Appendix 3 

(www.cdc.gov/EID/content/17/1/7-Techapp3.pdf). Typically, we chose to use empirical 

distributions in describing surveillance data and data that had features that we thought should not 

be smoothed via summary reduction; the 4-parameter beta was used in situations that 

incorporated multiple distinct subjective elements. For example, we often combined multiple 

values from published literature, and wanted to incorporate their reported and often unreported 

statistical uncertainties, and the non-statistical uncertainties associated with their differing data 

sources and methodologies. Our choice to preserve features of the data using empirical 

distributions is discussed further below.  

Much of the data we used could have been treated as if they were derived from simple 

sampling models; in statistical terms, we could have assumed that observations were identically 

distributed and independent. For example, the FoodNet surveillance data for a given pathogen 

for 2005-2008 might be aggregated to annual counts and the resulting 4 counts treated as a 

random sample from the target population. The same approach might be applied to the annual 

outbreak-associated case counts, and the annual national surveillance case counts (online 

Technical Appendix 1, www.cdc.gov/EID/content/17/1/7-Techapp1.pdf). We could treat 

uncertainty in the usual statistical sense and operate, for example, with standard errors calculated 

as estimated population standard deviations divided by square roots of sample sizes.  

We chose not to treat uncertainty in that way. The above approach makes two suspect 

assumptions. First, it assumes that the aggregated data represent a single sample of multiple 

counts from a homogeneous population (as opposed to a set of single count samples from distinct 

annual populations with different characteristics). This is the identically distributed part. Second, 

it assumes that the single sample is a random sample. This is the independently distributed part. 

While these assumptions might be approximately valid for some of our data, our historical 

experience with both our own and other surveillance and survey data, input from experts, and an 

examination of the data themselves, have convinced us that these assumptions are not likely to be 

valid in most cases. Moreover, we have no reliable way to distinguish those for which these 

assumptions are valid.  

Therefore, we chose to treat, for example, an outbreak case count series of 8 years as 

representing 8 distinct population means which likely span the unknown mean of the target 
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population. This leads to an estimate that is still the mean of the observed data, but with an 

uncertainty described by the standard deviation of that data, and not a nominal standard error. In 

keeping with this idea that the data do not necessarily directly represent the characteristic being 

estimated, we chose to use empirical distributions as descriptions, thus preserving individual data 

points. We extended this approach beyond surveillance data to the population surveys and other 

data sources. Every data source indicated in Table 1 reflects multiple years of data collection, 

except for the Census data which identifies the target 2006 US resident population. [Even that 

has some visible uncertainty associated with it, in that one might argue to include or exclude 

non-resident or institutionalized or military populations, under specific circumstances.] 

The outputs of our models are summarized by features of posterior distributions 

calculated by Monte Carlo simulation. While we were not able to perform a complete analysis of 

the uncertainty associated with the simulation itself (Monte Carlo error), the 100,000 replicate 

uniform basis for our distributions appears to generally achieve an error of less than 0.5% and 

frequently less than 0.1%, based on examining multiple simulations for non-typhoidal 

Salmonella and Giardia. 

Model structures 

We used different modeling structures, depending on data type, to estimate the total 

number of illnesses, hospitalizations, and deaths due to 31 known foodborne pathogens.  

The model structures are of the following two broad types:  

• Model type A: This model scales counts of laboratory-confirmed (reported) 

illnesses up to an estimated number of ill persons, accounting for 

underreporting and under-diagnosis factors that contribute to an illness not 

being reported to public health agencies (Box 1).  

• Model type B: This model scales populations at risk down to an estimated 

number of ill persons (Box 2).  

All models described here are multiplicative; successive factors are applied by 

multiplication to obtain proportional increases or decreases in the count. This tends to produce 

wider ranges in the final distribution estimates than additive models. 
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Each of these models has subtypes that reflect the available data. The figures describe 

mathematical multipliers in the key models. Figures 2, 2a, 3 and 5 consist of a series of 

histograms that describe the distributions of simulated individual multiplicative factors as they 

are successively applied to elements of the burden estimates. More details on the variations 

applied to these models are described in online Technical Appendix 3. 

Multiplication of distributions is accomplished using Monte Carlo simulation. Simulation 

of the empirical distributions corresponds to simple nonparametric bootstrapping (2), which is 

the random re-sampling of observed data, with replacement, to obtain a series of new samples 

that simulate the variability in the original chance process that gave rise to the data. 

Bootstrapping provides the initial link to the approximate Bayesian interpretation of the model 

outputs (3,4). 

Box 1: Pathogens for which laboratory-confirmed illnesses were scaled up to estimate the total number of illnesses 
Active surveillance data 

• Campylobacter spp. 
• Cryptosporidium spp. 
• Cyclospora cayetanensis 
• Escherichia coli, Shiga toxin–

producing (STEC) O157 
• E. coli, Shiga toxin-producing 

(STEC), non-O157 
• Listeria monocytogenes 
• Salmonella, non-typhoidal 
• Salmonella serotype Typhi 
• Shigella spp. 
• Yersinia entercolitica 

Passive surveillance data 
• Brucella spp. 
• Clostridium botulinum, foodborne 

• Giardia intestinalis 
• Hepatitis A 
• Mycobacterium bovis 
• Trichinella spp. 
• Vibrio cholerae, toxigenic 
• Vibrio parahaemolyticus 
• Vibrio vulnificus 
• Vibrio spp., other 

 

Outbreak surveillance data  
• Bacillus cereus 
• Clostridium perfringens 
• E. coli, enterotoxigenic (ETEC)* 
• Staphylococcus aureus 
• Streptococcus spp., Group A 

* E. coli, other than STEC or ETEC assumed to be equal to ETEC (online Technical Appendix 3)  

 
Box 2: Pathogens for which populations were scaled down to 
estimate the total number of illnesses 

• Astrovirus 
• Norovirus 
• Rotavirus 
• Sapovirus 
• Toxoplasma gondii 

 

Figure 1 provides a schematic representation of the modeling process for pathogens for 

which reported counts of illness are scaled up. Some factors in the schematic are stochastic 

(italic font) and some factors are deterministic (bold font). Some factors are applied generally 

and some are applied as needed, depending on data source.  

Note that the schematic shows 6 primary model outputs, as identified in the box at the 

right and obtained by inclusion of specific elements from the rightmost two model factors, 

column (1or H or D) and row (1 or F). For example, choice of D and F yields the output for 
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foodborne deaths. Each factor represents a probability distribution, either an empirical 

distribution based on observed or estimated data, or a parametric distribution. Details of the 

choices made to define these distributions are provided in online Technical Appendix 3. The 

model outputs are the resulting probability distributions from the multiplication of the 

component factor distributions. All factors for a given output are stochastically independent 

except for those making up the two-part mixture of mild and severe illness. 

 

Figure 1: Schematic illustration of model type A, which scales case counts up 
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Where:  

Count refers to data in the form of cases of reported illnesses. 
Year is a deterministic factor to standardize non-2006 counts to 2006. Applied as needed 
Geo is a deterministic expansive factor to scale FoodNet counts up to the entire US population. 
Applied as needed. 
Dom is a contractive factor to scale total counts down to counts that are domestically acquired. 
Applied as needed. 
Und is an expansive factor to scale passive surveillance case counts up to active surveillance 
counts. Applied as needed. 
Ob is an expansive factor to scale outbreak case counts up to laboratory confirmed counts. 
Applied as needed. 
CS is an expansive factor to scale care seekers up to all ill, with severe and mild illness 
versions. 
SS is an expansive factor to scale submitted samples up to all ill visits, with severe and mild 
illness versions. 
PS is the proportion of actual illness that is severe. 
LT is an expansive factor to scale tests performed up to samples submitted. 
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LS is an expansive factor to scale positive tests up to true positive specimens. 
H is a contractive factor to scale illnesses down to hospitalized illnesses. 
D is a contractive factor to scale illnesses down to deaths. 
F is a contractive factor to scale overall counts down to counts that are foodborne. 

 
 
 

Figures 2, 2a, and 3 illustrate the stochastic model structures for Campylobacter, which 

provides an example of a pathogen for which reported cases are scaled up.  
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The empirical nature of the source data is apparent in the first panel of Figure 2, as is the 

parametric nature of the other factors. Note the complex multimodal nature of the output 

distribution of foodborne illnesses, a common feature among the pathogens whose burden is 

scaled up from reported cases. The best way to summarize the distribution is not obvious, e.g. 

mean, median, mode, or some more complex aggregating function of the data. We chose to 

summarize using the mean and the limits of a 90% credible interval (Tables 2 and 3 of the 

manuscript). The mode is obviously not possible. The mean is the most familiar measure and has 

the property that, under independence, the mean of the product is equal to the product of the 

means, which is not true of the median. That property makes the results of the analysis more 

transparent. We decided that by using both the mean and quantiles, we capture a broad picture of 

the distribution, applicable across a wide array of distributional shapes. Note that we treat the 

output distribution as a Bayesian posterior distribution. While our analysis is not fully Bayesian 

in that a full likelihood is not specified, bootstrapping of observed sample data has a 
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nonparametric Bayesian interpretation and many other elements of the models can be viewed as 

variously elicited prior distributions or even empirical Bayes posterior distributions. The other 

FoodNet pathogens from Box 1 were modeled in the same way. Each reported illness in the 

FoodNet data carries a field for whether the illness was outbreak-related, involved international 

travel, included hospitalization, and included death. Whether the illness occurred as part of a 

reported outbreak was determined for all FoodNet pathogens for 2004-2008. Travel status, 

hospitalization status, and death status were missing sufficiently often to warrant treatment, 

although some FoodNet sites had negligible missingness across most pathogens. Comparisons 

between FoodNet sites with differing levels of missingness suggested that an assumption of 

missingness at random (MAR) was reasonable, and so all three variables were treated so. That is, 

the status of each variable was predicted based on the relative proportions observed in cases for 

which that variable was not missing. Because missingness of travel status was high and variable, 

we used a PERT distribution based on overall known pathogen travel proportions and a generic 

uncertainty. For each pathogen’s hospitalizations and deaths we predicted the value of missing 

status using the known proportions at the level of year and FoodNet site (i.e., the aggregation 

level of the FoodNet data chosen for all analyses), at each iteration of the bootstrap. (See Figure 

3 panels for percent hospitalized and percent domestically acquired). We note two specific 

additional issues involving missingness. Six percent of Salmonella specimens were either not 

serotyped or only partially serotyped. We classified them as Salmonella, non-typhoidal because 

less than 1% of serotyped Salmonella were serotype Typhi. Relative to an MAR assumption, the 

potential bias from this decision would be expected to be on the order of 0.05%, negligible 

relative to the other sources of uncertainty in the Salmonella model. Eight percent of specimens 

of Yersinia were not speciated. We classified them as enterocolitica because only 9% of 

speciated Yersinia were other species. Relative to an MAR assumption, that potential bias would 

be expected to be on the order of 0.7%, negligible relative to the other sources of uncertainty in 

the Yersinia model.  

Some different elements were used for passive surveillance and outbreak surveillance 

pathogens collectively and individually. Passive and outbreak surveillance pathogens were 

adjusted for underreporting, but in different ways (online Technical Appendix 4, 

www.cdc.gov/EID/content/17/1/7-Techapp4.pdf). Bootstrapping of the reported annual counts of 

Hepatitis A and each of the Vibrio categories was done on a weighted basis, where by weighted 
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we mean here that 2006 was treated as a distinct time point and bootstrapping was done ‘around’ 

this point. This was done because these pathogens showed apparent trends over the years 2000-

2007. To account for this we fit simple linear regression lines to the data series and used the 

ordinate values of the fitted lines at year 2006 as the predicted mean counts. Bootstrapping was 

then performed on the regression residuals, scaled for the uncertainty of the linear fit, plus the 

constant predicted mean counts. This yielded a process that was very similar in terms of output 

distributions to the simple bootstrapping of the other pathogens. The data series were sufficiently 

short and patterns sufficiently simple that we did not consider more complicated trend models. 

Figure 4 provides a schematic representation of the modeling process for pathogens for 

which populations at risk of illness were scaled down to estimate case counts. It is much simpler 

in basic form than the process for pathogens that are scaled up. Again, the schematic shows 6 

primary model outputs, as identified in the box at the right and obtained by inclusion of specific 

elements from the rightmost two model factors, column (1 or H or D) and row (1 or F). Each 

stochastic factor represents a probability distribution. Details of the choices made to define these 

distributions are provided in online Technical Appendix 3. The model outputs are the resulting 

probability distributions from the multiplication of the component factor distributions. All factors 

for a given output are stochastically independent. 

 
Figure 4: Schematic illustration of model structure for scaling populations down 
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Where:  

Pop refers to the particular population at risk of illness. 
P1– Pk is a generic set of contractive factors. (e.g., percent of episodes of AGI due to 
norovirus) 
Dom is a contractive factor to scale total counts down to counts that are domestically acquired. 
H is a contractive factor to scale illnesses down to hospitalized illnesses. 
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D is a contractive factor to scale illnesses down to deaths. 
F is a contractive factor to scale overall counts down to counts that are foodborne. 

 
 

Figure 5 (next page) illustrates model structures for norovirus, which provides an 

example of a pathogen for which populations at risk are scaled down. The only new element of 

the norovirus model relative to Campylobacter is reflected in the “Annual Incidence of AGI” 

panel. Multiple cycles of the FoodNet Population Survey were used to estimate monthly 

prevalence and in turn annual incidence of acute gastrointestinal illness (AGI). The survey data 

showed variation among the three surveys and by FoodNet site, with site being the largest source 

of variation. We computed estimates of site-level AGI incidence for the 10 sites contributing 

data across the three surveys. These estimates were bootstrapped and a normal error component 

was added, based on the standard errors of the site-level AGI estimates. The net effect was a 

“mixture of normal distributions” uncertainty model for AGI incidence. This is reflected in the 

colored segments of the Figure 5 panel. They combine to show a composition of densities. That 

is, at each value of incidence, the height of the density is partitioned into segments whose 

relative lengths reflect the conditional probability that a given site contributed the incidence 

value across the bootstrap replications. The ordering of the segments is from smallest site AGI 

incidence to largest site AGI incidence, and shows the ‘smearing’ of the distribution due to site-

to-site variation. 
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The remaining “scale down” pathogen models were constructed in a very similar fashion. 

Astrovirus, rotavirus, and sapovirus models were simpler than norovirus, with the chief 

distinction being that they all start from a population at risk defined to be the birth cohort for 

2006. We simply applied distributions for the fractions that become infected, develop 

symptomatic illness, become hospitalized, and die. The Toxoplasma gondii model is based on a 

mathematical incidence model applied to the US population as a whole, and has complex 

uncertainties associated with applying such an incidence model across an entire population when 

the incidence dynamic has changed over time and the serology data that forms the basis of the 

model is cross-sectional. That said, the structure of the uncertainty distribution is not different 

from that of the other pathogens.  
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Final comments 

We mentioned in the background section that we did not assume observed counts or 

ratios were identically distributed and independent. We did use means as best estimates, but 

retained the individual observations and their associated variability. It is worth noting that the 

retention of source data variability generally means that source data is the dominant component 

of the variance in the posterior distributions. This means that, in our models, widths of credible 

intervals are robust to the specification of variability for model elements such as underreporting 

and the components of under-diagnosis, percent domestically acquired, and percent foodborne. 

That robustness is particularly desirable because the total number of parameters to be specified is 

very large and the amount of pathogen-specific data is relatively small. Specifying a large 

number of distinct values, some based on subjective judgments and sparse data, is not desirable 

in the same sense that over-fitting of regression models is not desirable. The robustness of the 

model allowed us to use some common specifications. For example, we used laboratory test 

sensitivity inputs based on data for Salmonella to describe features relating to some other 

pathogens because pathogen-specific data were not available. This choice had little effect on the 

overall result for any pathogen.  

Consider the last (lower right) panel of Figure 2. This panel shows a histogram that 

reflects our beliefs about the burden of annual domestically acquired foodborne illness from 

Campylobacter infection.  It is distinctly multimodal and has a large coefficient of variation. An 

assumption that the FoodNet sites are a random sample of the United States as a whole would 

allow this distribution to be smoothed, and produce a unimodal posterior distribution, still with a 

mean of 850,000 but with a much smaller coefficient of variation. But because FoodNet is not a 

random sample and shows a very large degree of geographical variation in infection rates it is 

quite possible that the country as whole looks more like the three states that produced the lowest 

mode, Georgia, Maryland, and Tennessee, than the other seven sites under surveillance. We 

think that this is the most defensible presentation of burden uncertainty as derived from the 

available surveillance data. It explicitly acknowledges a substantial component of non-statistical 

uncertainty in the modeling process. 
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