Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 17, Number 12—December 2011

Letter

Coxiella burnetii Infection in Roe Deer during Q Fever Epidemic, the Netherlands

Jolianne M. RijksComments to Author , Hendrik I.J. Roest, Peter W. van Tulden, Marja J.L. Kik, Jooske IJzer, Andrea Gröne, and Jooske IJzer
Author affiliations: Dutch Wildlife Health Centre, Utrecht, the Netherlands (J. M. Rijks, M.J.L. Kik, J. IJzer, A. Gröne); Central Veterinary Institute, part of Wageningen University and Research Center, Lelystad, the Netherlands (H.I.J. Roest, P.W. van Tulden).

Main Article

Figure

Phylogenetic tree with genotypes of Coxiella burnetii from goat, human, and roe deer samples from the Netherlands. Genotypes were determined on the basis of 11 multilocus variable-number tandem-repeat analyses (MLVA). The number of repeats per locus is shown; open spots indicate missing values. Roe deer 1 was an adult female found dead on March 30, 2010, in Friesland Province. Roe deer 2 was a young female deer involved in a traffic accident on April 6, 2010, in Utrecht Province. The goat and hu

Figure. Phylogenetic tree with genotypes of Coxiella burnetii from goat, human, and roe deer samples from the Netherlands. Genotypes were determined on the basis of 11 multilocus variable-number tandem-repeat analyses (MLVA). The number of repeats per locus is shown; open spots indicate missing values. Roe deer 1 was an adult female found dead on March 30, 2010, in Friesland Province. Roe deer 2 was a young female deer involved in a traffic accident on April 6, 2010, in Utrecht Province. The goat and human samples have been described (2). Scale bar indicates genetic relatedness. Human 1, QKP 1; Human 2, QKP 2; NM, Nine Mile reference strain; MS, MiniSatellite.

Main Article

TOP