Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 4—April 2011
Dispatch

Hepatitis A Virus Vaccine Escape Variants and Potential New Serotype Emergence

Unai Pérez-Sautu1, M. Isabel Costafreda1, Joan Caylà, Cecilia Tortajada, Josep Lite, Albert Bosch, and Rosa M. PintóComments to Author 
Author affiliations: Author affiliations: University of Barcelona, Barcelona, Spain (U. Pérez-Sautu, M.I. Costafreda, A. Bosch, R.M. Pintó); Public Health Agency of Barcelona, Barcelona (J. Caylà, C. Tortajada); CatLab, Viladecavalls, Spain (J. Lite)

Main Article

Figure 2

Growth competition experiments. Monoclonal antibody–resistant (MAR) mutants C6 (W1170C) and P29 (A1187P) were grown in competition with the HM175/43c (wild-type virus) in the presence (A, B) or in the absence (C, D) of the monoclonal antibody (MAb) K34C8. The MAR/wild-type ratios were 1:100 (104 50% tissue culture infective dose [TCID50] units of MAR mutants mixed with 106 TCID50 units of the wild-type virus in the presence of the K34C8 MAb) and 1:1 (106 TCID50 units of MAR mutants mixed with 10

Figure 2. Growth competition experiments. Monoclonal antibody–resistant (MAR) mutants C6 (W1170C) and P29 (A1187P) were grown in competition with the HM175/43c (wild-type virus) in the presence (A, B) or in the absence (C, D) of the monoclonal antibody (MAb) K34C8. The MAR/wild-type ratios were 1:100 (104 50% tissue culture infective dose [TCID50] units of MAR mutants mixed with 106 TCID50 units of the wild-type virus in the presence of the K34C8 MAb) and 1:1 (106 TCID50 units of MAR mutants mixed with 106 TCID50 units of the wild-type virus in the absence of antibodies). In the competition experiments performed in the presence of antibodies, the initial viral mixtures as well as the viral progenies were neutralized with the MAb prior each infection passage. The proportion of mutant and wild-type phenotypes at each passage was inferred from the chromatogram of the consensus sequences and using as marker mutations W1170C and A1187P in C6 and P29 MARs, respectively (9).

Main Article

References
  1. Pintó  RM, Costafreda  MI, Bosch  A. Risk assessment in shellfish-borne outbreaks of hepatitis A. Appl Environ Microbiol. 2009;75:73505. DOIPubMedGoogle Scholar
  2. Wheeler  C, Vogt  TM, Armstrong  GL, Vaughan  G, Weltman  A, Nainan  OV, An outbreak of hepatitis A associated with green onions. N Engl J Med. 2005;353:8907. DOIPubMedGoogle Scholar
  3. Faber  MS, Stark  K, Behnke  SC, Schreier  E, Frank  C. Epidemiology of hepatitis A virus infections, Germany, 2007–2008. Emerg Infect Dis. 2009;15:17608.PubMedGoogle Scholar
  4. Stene-Johansen  K, Tjon  G, Schreier  E, Bremer  V, Bruisten  S, Ngui  SL, Molecular epidemiological studies show that hepatitis A virus is endemic among active homosexual men in Europe. J Med Virol. 2007;79:35665. DOIPubMedGoogle Scholar
  5. Costa-Mattioli  M, Napoli  AD, Ferre  V, Billaudel  S, Perez-Bercoff  R, Cristina  J. Genetic variability of hepatitis A virus. J Gen Virol. 2003;84:3191201. DOIPubMedGoogle Scholar
  6. Robertson  BH, Jansen  RW, Khanna  B, Totsuka  A, Nainan  OV, Siegl  G, Genetic relatedness of hepatitis A virus strains recovered from different geographical regions. J Gen Virol. 1992;73:136577. DOIPubMedGoogle Scholar
  7. Sánchez  G, Bosch  A, Pintó  RM. Genome variability and capsid structural constraints of hepatitis A virus. J Virol. 2003;77:4529. DOIPubMedGoogle Scholar
  8. Sánchez  G, Bosch  A, Gomez-Mariano  G, Domingo  E, Pintó  RM. Evidence for quasispecies distributions in the human hepatitis A virus genome. Virology. 2003;315:3442. DOIPubMedGoogle Scholar
  9. Aragonès  L, Bosch  A, Pintó  RM, Hepatitis  A. Virus mutant spectra under the selective pressure of monoclonal antibodies: codon usage constraints limit capsid variability. J Virol. 2008;82:1688700. DOIPubMedGoogle Scholar
  10. Aragonès  L, Guix  S, Ribes  E, Bosch  A, Pintó  RM. Fine-tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis A virus capsid. PLoS Pathog. 2010;6:e1000797. DOIPubMedGoogle Scholar
  11. Luo  M, Rossmann  MG, Palmenberg  AC. Prediction of three-dimensional models for foot-and-mouth disease virus and hepatitis a virus. Virology. 1988;166:50314. DOIPubMedGoogle Scholar
  12. Ping  LH, Lemon  SM. Antigenic structure of human hepatitis A virus defined by analysis of escape mutants selected against murine monoclonal antibodies. J Virol. 1992;66:220816.PubMedGoogle Scholar
  13. Sánchez  G, Aragonès  L, Costafreda  MI, Ribes  E, Bosch  A, Pintó  RM. Capsid region involved in hepatitis a virus binding to glycophorin A of the erythrocyte membrane. J Virol. 2004;78:980713. DOIPubMedGoogle Scholar
  14. Weissman  S, Feucht  C, Moore  BA. Response to hepatitis A vaccine in HIV-positive patients. J Viral Hepat. 2006;13:816. DOIPubMedGoogle Scholar
  15. Neilsen  GA, Bodsworth  NJ, Watts  N. Response to hepatitis A vaccination in human immunodeficiency virus-infected and -uninfected homosexual men. J Infect Dis. 1997;176:10647. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: July 25, 2011
Page updated: July 25, 2011
Page reviewed: July 25, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external