Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 17, Number 8—August 2011

Research

Enterovirus 68 among Children with Severe Acute Respiratory Infection, the Philippines

Tadatsugu Imamura, Naoko Fuji, Akira Suzuki, Raita Tamaki, Mariko Saito, Rapunzel Aniceto, Hazel Galang, Lydia Sombrero, Soccoro Lupisan, and Hitoshi OshitaniComments to Author 
Author affiliations: Author affiliations: Tohoku University Graduate School of Medicine, Sendai, Japan (T. Imamura, N. Fuji, A. Suzuki, H. Oshitani); Tohoku-Research Institute for Tropical Medicine Collaborating Research Center on Emerging and Reemerging Diseases, Muntinlupa City, the Philippines (R. Tamaki, M. Saito, R. Aniceto); Eastern Visayas Regional Medical Center, Tacloban City, the Philippines (R. Aniceto); Research Institute for Tropical Medicine, Muntinlupa City (H. Galang, L. Sombrero, S. Lupisan)

Main Article

Figure 1

Phylogenetic trees of selected enterovirus (EV) 68 strains, based on the nucleotide sequence of 2 genomic regions: A) partial 5′ nontranslated region and B) partial viral protein 1. EV68 strains analyzed in this study are indicated by black circles. Phylogenetic analysis was performed by using nucleotide alignments and the neighbor-joining method, as implemented in MEGA software (www.megasoftware.net). Poliovirus 1, EV70, and EV94 sequences were used as outgroups. Scale bar indicates number of n

Figure 1. Phylogenetic trees of selected enterovirus (EV) 68 strains, based on the nucleotide sequence of 2 genomic regions: A) partial 5′ nontranslated region and B) partial viral protein 1. EV68 strains analyzed in this study are indicated by black circles. Phylogenetic analysis was performed by using nucleotide alignments and the neighbor-joining method, as implemented in MEGA software (www.megasoftware.net). Poliovirus 1, EV70, and EV94 sequences were used as outgroups. Scale bar indicates number of nucleotide substitutions per site.

Main Article

TOP