Anaplasma phagocytophilum Antibodies in Humans, Japan, 2010–2011

To the Editor: Human granulocytic anaplasmosis (HGA) is an emerging tick-borne infectious disease caused by Anaplasma phagocytophilum, an obligatory intracellular bacterium (1). Recently, 2 cases of HGA were identified by a retrospective study in Japan (2). For serodiagnosis of HGA, A. phagocytophilum propagated in HL60 cells is usually used as an antigen, especially by indirect immunofluorescent assay (IFA) (3). However, the serum from these 2 patients in Japan reacted with antigens of A. phagocytophilum cultured in THP-1 cells rather than in HL60 cells in IFA (2). In A. phagocytophilum, a p44/msp2 multigene family encoding multiple 44-kDa immunodominant major outer membrane protein species (so-called P44) exists on the genome, and these multigenes are similar, but not identical, to each other, and the bacterium generates antigenic variations because of gene conversion (4). The previous studies showed that A. phagocytophilum expresses predominantly 2 species of p44/msp2 transcripts in THP-1 cells, but it produces the variation of P44 protein species in HL60 cells (2,5). This finding strongly suggested that *A. phagocytophilum* grown in THP-1 cells differs serologically from that in HL60 cells. Our serologic analysis found 4 recent cases of HGA in Japan by using infected THP-1 and HL60 cells as antigens, and some P44 immunoreactive protein species of *A. phagocytophilum* that were associated with the respective cell line cultures, binding to antibodies from the 4 patients' serum, also were identified.

In 2010 and 2011, nine patients in Shizuoka Prefecture, Japan, who had rickettsiosis-like symptoms, were suspected to have Japanese spotted fever or scrub typhus, but they were serologically negative by IFA. Therefore, IFA for HGA was conducted. In 4 of the patients, antibodies to A. phagocytophilum were detected in serum by using A. phagocytophilum cultured in THP-1 and HL60 cells as antigens (Table). In IFA tests for HGA, IgM and/or IgG from the patients' serum samples reacted with A. phagocytophilum cultured in THP-1, HL60, or both, and the seroconversions were observed in convalescent-phase serum from all patients. The clinical manifestation and laboratory findings for the 4 patients are summarized in the online Technical Appendix Table, (wwwnc. cdc.gov/EID/article/20/3/13-1337-Techapp1.pdf). Western blot analysis

further confirmed the specific reaction to P44 protein antigens (P44s) of *A. phagocytophilum* cultured in THP-1 and HL60 and to recombinant P44–1 protein (rP44–1) in the serum samples (online Technical Appendix Figures 1 and 2), supporting the IFA results in the Table.

To identify P44 immunodominant protein species binding to antibodies from the patients' serum, we selected P44-47E and P44-60 proteins that are dominantly expressed by A. phagocytophilum propagated in THP-1 cells (2) and P44–18ES protein that frequently predominates by A. phagocytophilum cultured in HL60 cells (6) as representatives for the preparation of recombinant proteins. The central hypervariable regions of the respective P44 proteins (online Technical Appendix Figure 3) were produced as recombinant proteins in vitro by insect cell-free protein synthesis system (Transdirect Insect Cell Kit; Shimadzu Co., Kyoto, Japan) (7) to avoid the strong nonspecific reaction with human serum that occurs in the Escherichia coli expression system. In Western blot analyses using these 3 recombinant P44 proteins (rP44-60 and rP44-47E for THP-1 and rP44-18ES for HL60) as antigens, most of the serum from the patients was reactive with A. phagocytophilum cultured in THP-1 cells in IFA bound to either rP44-60 or rP44-47E, whereas the

anaplasmos	inofluorescence an is and reactive rP4	4 protein species, Japan,	<i>phagocytophilum</i> in serum 2010–2011*	n from 4 patients with huma	n granulocytic
		Antigen			
	Time offer	A. phagocytophilum propagated in THP-1 cells		A. phagocytophilum propagated in HL60 cells	
Patient no.	illness onset, d	IgM	IgG	(1P44 S	lgG
1	1	80 (r60)	<20	80 (r18ES)	<20
	15	160 (r60)	<20	160 (r18ES)	<20
	30	320 (r60)	20 (r60)	320 (r18ES)	<20
2	13	40	40 (r47E)	<20	20
3	3	40	80 (r60)	<20	20 (r18ES)
	7	40	80 (r60)	<20	20 (r18ES)
	24	80 (r60)	160 (r60)	<20	40 (r18ES)
4	4	160 (r47E)	40	<20	<20
	15	160 (r47E)	80	<20	<20

*Three recombinant P44 (rP44) protein species (r18ES, r47E, r60) were prepared and either one bound to antibodies in each serum sample from 4 patients in Western blot analyses (online Technical Appendix Figure 4, wwwnc.cdc.gov/EID/article/20/3/13-1337-Techapp1.pdf). r18ES represents rP44– 18ES immunoreactive outer membrane protein that is known to predominate in *A. phagocytophilum* cultured in HL60 cells (6). r47E and r60 show rP44– 47E and rP44–60 proteins, respectively, that are dominantly transcribed in *A. phagocytophilum* propagated in THP-1 cells (2).

patients' serum reactive with *A. phago-cytophilum* cultured in HL60 cells in IFA bound to rP44–18ES (online Technical Appendix Figure 4; Table). This finding strongly supports the results of IFA and Western blot analyses with the infected THP-1 and HL60 cells.

In Japan, rickettsioses such as Japanese spotted fever and scrub typhus, caused by Rickettsia japonica and Orientia tsutsugamushi, respectively, occur frequently. However, fever of unknown cause and rickettsiosis-like symptoms still occur in some patients. Detection of A. phagocytophilum in ticks was first reported in 2005 in central Japan (8). Since then, DNA of A. phagocvtophilum has been detected in ticks inhabiting several places of Japan (9,10). However, little was known about human infection with A. phagocytophilum for many years, probably because of the poor selection of the culture cell line used as infected cell antigens for serodiagnosis. Our previous study first documented HGA in Japan and recommended that A. phagocytophilum propagated in THP-1 and in HL60 cells be used as antigens to avoid misdiagnosing cases of HGA. Our current study demonstrates the presence of specific antibodies against the central hypervariable regions of P44-47E, P44-60, or P44-18ES proteins that predominate in infected THP-1 or HL60 cells, probably being suitable as protein antigens for serodiagnosis of HGA. The rP44-1 protein whose recombinant plasmid had previously been constructed for E. coli expression system may be available as well. Thus, our study provides substantial information about the usefulness of suitable P44 immunoreactive protein species of A. phagocytophilum as antigens for serodiagnosis of HGA.

This work was supported in part by a grant for Research on Emerging and Reemerging Infectious Diseases from The Association for Preventive Medicine of Japan; grants for Research on Emerging and Reemerging Infectious Diseases from the Japanese Ministry of Health, Labour and Welfare (H18-Shinkou-Ippan-14) and (H21-Shinkou-Ippan-014); a grant for Global Center of Excellence Program from Japanese Ministry of Education, Culture, Sports, Science and Technology; and a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (no. 23590514) for N.O.

Gaowa, Yuko Yoshikawa, Norio Ohashi, Dongxing Wu, Fumihiko Kawamori, Asaka Ikegaya, Takuya Watanabe, Kazuhito Saitoh, Daisuke Takechi, Yoichi Murakami, Daisuke Shichi, Katsumi Aso,¹ and Shuji Ando

Author affiliations: University of Shizuoka and Global Center of Excellence Program, Shizuoka City, Japan (Gaowa, Y. Yoshikawa, N. Ohashi, D. Wu,); Shizuoka Institute of Environment and Hygiene, Shizuoka City (F. Kawamori, A. Ikegaya); Seirei Hamamatsu General Hospital, Shizuoka (T. Watanabe, K. Saitoh, D. Takechi); Seirei Mikatagahara General Hospital, Shizuoka (Y. Murakami, D. Shichi); Seirei Numazu Hospital, Shizuoka (K. Aso); and National Institute of Infectious Diseases, Tokyo, Japan (S. Ando)

DOI: http://dx.doi.org/10.3201/eid2003.131337

References

- Bakken JS, Dumler S. Human granulocytic anaplasmosis. Infect Dis Clin North Am. 2008;22:433–48. http://dx.doi. org/10.1016/j.idc.2008.03.011
- Ohashi N, Gaowa, Wuritu, Kawamori F, Wu D, Yoshikawa Y, et al. Human granulocytic anaplasmosis, Japan. Emerg Infect Dis. 2013;19:289–92. http://dx.doi. org/10.3201/eid1902.120855
- Walls JJ, Aguero-Rosenfeld M, Bakkn JS, Goodman JL, Hossain D, Johnson RC, et al. Inter- and intralaboratory comparison of *Ehrlichia equi* and human granulocytic ehrlichiosis (HGE) agent strains for serodiagnosis of HGE by the immunofluorescent-antibody test. J Clin Microbiol. 1999;37:2968–73.
- 4. Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, et al.

¹Current affiliation: Aso Clinic, Numazu, Japan.

Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006;2:e21.

- Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: *Anaplasma phagocytophilum* and *Ehrlichia chaffeensis*. Front Microbiol. 2011;2:24.. http://dx.doi. org/10.3389/fmicb.2011.00024
- Sarkar M, Troese MJ, Kearns SA, Yang T, Reneer DV, Carlyon JA. *Anaplasma phagocytophilum* MSP2 (P44)-18 predominates and is modified into multiple isoforms in human myeloid cells. Infect Immun. 2008;76:2090–8. http://dx.doi. org/10.1128/IAI.01594-07
- Ezure T, Suzuki T, Shikata M, Ito M, Ando E. A cell-free protein synthesis from insect cells. Methods Mol Biol. 2010;607:31–42. http://dx.doi. org/10.1007/978-1-60327-331-2_4
- Ohashi N, Inayoshi M, Kitamura K, Kawamori F, Kawaguchi D, Nishimura Y, et al. *Anaplasma phagocytophilum*infected ticks, Japan. Emerg Infect Dis. 2005;11:1780–3. http://dx.doi. org/10.3201/eid1111.050407
- Gaowa, Ohashi N, Aochi M, Wuritu, Wu D, Yoshikawa Y, et al. Rickettsiae in ticks, Japan, 2007–2011. Emerg Infect Dis. 2013;19:338–40.
- Gaowa, Wuritu, Wu D, Yoshikawa Y, Ohashi N, Kawamori F, et al. Detection and characterization of *p44/msp2* transcript variants of *Anaplasma phagocytophilum* from naturally infected ticks and wild deer in Japan. Jpn J Infect Dis. 2012;65:79–83.

Address for correspondence: Norio Ohashi, Laboratory of Microbiology, Department of Food and Nutritional Sciences, School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; email: ohashi@u-shizuoka-ken.ac.jp

