Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 4—April 2014
Dispatch

Invasive Salmonella enterica Serotype Typhimurium Infections, Democratic Republic of the Congo, 2007–2011

Benedikt Ley, Simon Le Hello, Octavie Lunguya, Veerle Lejon, Jean-Jacques Muyembe, François-Xavier WeillComments to Author , and Jan Jacobs
Author affiliations: Institute of Tropical Medicine, Antwerp, Belgium (B. Ley, J. Jacobs); Institut Pasteur, Paris, France (S. Le Hello, F.-X. Weill); Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo (O. Lunguya, J.-J. Muyembe); Institut de Recherche pour le Développement, Montpellier, France (V. Lejon)

Main Article

Figure 2

Representative CRISPOL profiles of Salmonella enterica serotype Typhimurium isolates studied. CRISPOL is a recently developed high-throughput assay based on clustered regularly interspaced short palindromic repeats (CRISPR) polymorphisms. Black squares indicate presence of the CRISPR spacer, detected by the corresponding probe; white squares indicates absence of the spacer. The dendrogram was generated by using BioNumerics version 6.6 software (Applied Maths, Sint-Martens-Latem, Belgium) as desc

Figure 2. . Representative CRISPOL profiles of Salmonella enterica serotype Typhimurium isolates studied. CRISPOL is a recently developed high-throughput assay based on clustered regularly interspaced short palindromic repeats (CRISPR) polymorphisms. Black squares indicate presence of the CRISPR spacer, detected by the corresponding probe; white squares indicates absence of the spacer. The dendrogram was generated by using BioNumerics version 6.6 software (Applied Maths, Sint-Martens-Latem, Belgium) as described (5). The CRISPOL types (CTs) detected among the 180 isolates from the Democratic Republic of Congo (DRC) are labeled as DRC in the Source column. Six common CTs of the Pasteur Institute CRISPOL database (labeled as reference) are also shown. These CTs are from strains of serotype Typhimurium 02–1800 (CT34, DT120), 02–5270 (CT21, DT104), LT2 (CT41, DT4), 02–2561 (CT46, DT12), 02–1749 (CT7, DT14) or its monophasic variant of antigenic formula 1,4,[5],12:i:-, 07–1777 (CT1, DT193). For each distinct CT, the numbers of corresponding isolates, their sequence types (STs), and their antimicrobial drug susceptibility testing (AST) data are indicated. For the ST and AST columns, the numbers in parentheses refer to the number (>2) of tested isolates with such result. AST data are shown only for DRC isolates. The resistance types were as follows: R1, ASKTNGSulTmpC; R2, ASKTNGSulTmpCTe; R3, AC; R4, ASSulTmp; R5, ASSulTmpC; R6, ASSulTmpCNal; R7, ASSulTmpCTe; R8, ASulTmpC; R9, SSulTmpC; R10, ACroCazSKTNGSulTmpCTeAzi; and R11, ACroSKTNGSulTmpCTeNaAzi. Abbreviations used in the descriptions of resistance types are as follows: A, amoxicillin; Cro, ceftriaxone; Caz; ceftazidime; S, streptomycin; K, kanamycin; T, tobramycin; N, netilmicin; G, gentamicin; Sul, sulfamethoxazole; Tmp, trimethoprim; C, chloramphenicol; Te, tetracycline; Nal, nalidixic acid; Azi, azithromycin.

Main Article

References
  1. Kingsley  RA, Msefula  CL, Thomson  NR, Kariuki  S, Holt  KE, Gordon  MA, Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19:227987. DOIPubMedGoogle Scholar
  2. Feasey  NA, Dougan  G, Kingsley  RA, Heyderman  RS, Gordon  MA. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379:248999. DOIPubMedGoogle Scholar
  3. Okoro  CK, Kingsley  RA, Connor  TR, Harris  SR, Parry  CM, Al-Mashhadani  MN, Intra-continental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44:121521. DOIPubMedGoogle Scholar
  4. Lunguya  O, Lejon  V, Phoba  MF, Bertrand  S, Vanhoof  R, Glupczynski  Y, Antimicrobial resistance in invasive non-typhoid Salmonella from the Democratic Republic of the Congo: emergence of decreased fluoroquinolone susceptibility and extended-spectrum beta lactamases. PLoS Negl Trop Dis. 2013;7:e2103. DOIPubMedGoogle Scholar
  5. Fabre  L, Zhang  J, Guigon  G, Le Hello  S, Guibert  V, Accou-Demartin  M, CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS ONE. 2012;7:e36995. DOIPubMedGoogle Scholar
  6. Achtman  M, Wain  J, Weill  FX, Nair  S, Zhou  Z, Sangal  V, Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012;8:e1002776 . DOIPubMedGoogle Scholar
  7. Le Hello  S, Harrois  D, Bouchrif  B, Sontag  L, Elhani  D, Guibert  V, Highly drug-resistant Salmonella enterica serotype Kentucky ST198–X1: a microbiological study. Lancet Infect Dis. 2013;13:6729. DOIPubMedGoogle Scholar
  8. Jarlier  V, Nicolas  MH, Fournier  G, Philippon  A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988;10:86778. DOIPubMedGoogle Scholar
  9. Msefula  CL, Kingsley  RA, Gordon  MA, Molyneux  E, Molyneux  ME, MacLennan  CA, Genotypic homogeneity of multidrug resistant S. Typhimurium infecting distinct adult and childhood susceptibility groups in Blantyre, Malawi. PLoS ONE. 2012;7:e42085. DOIPubMedGoogle Scholar
  10. Wain  J, Keddy  KH, Hendriksen  RS, Rubino  S. Using next generation sequencing to tackle non-typhoidal Salmonella infections. J Infect Dev Ctries. 2013;7:15 .DOIPubMedGoogle Scholar
  11. Kariuki  S, Revathi  G, Kariuki  N, Kiiru  J, Mwituria  J, Muyodi  J, Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission? J Med Microbiol. 2006;55:58591 . DOIPubMedGoogle Scholar
  12. Parkhill  J, Dougan  G, James  KD, Thomson  NR, Pickard  D, Wain  J, Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001;413:84852. DOIPubMedGoogle Scholar
  13. Holt  KE, Parkhill  J, Mazzoni  CJ, Roumagnac  P, Weill  FX, Goodhead  I, High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet. 2008;40:98793. DOIPubMedGoogle Scholar

Main Article

Page created: March 18, 2014
Page updated: March 18, 2014
Page reviewed: March 18, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external