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Genetic  
Relatedness of  

Dolphin  
Rhabdovirus with 

Fish Rhabdoviruses
To the Editor: Rhabdoviruses 

are enveloped, single-stranded, nega-
tive-sense RNA viruses that comprise 
a large and diverse family in the or-
der Mononegavirales and infect ar-
thropods, plants, fish, and mammals. 
There are 9 genera of rhabdoviruses: 
Cytorhabdovirus, Ephemerovirus, Lys-
savirus, Novirhabdovirus, Nucleorhab-
dovirus, Perhabdovirus, Sigmavirus, 
Tibrovirus, and Vesiculovirus. In addi-
tion, a substantial number of plant, ver-
tebrate, and invertebrate rhabdoviruses 
have not been classified (1). Three gen-
era (Novirhabdovirus, Perhabdovirus, 
and Vesiculovirus) comprise members 
that infect fresh water and marine fish 
(2). Fish rhabdoviruses pose a serious 
problem for aquaculture because of 
worldwide outbreaks of disease caused 
by novirhabdoviruses, perhabdovirus-
es, and vesiculoviruses (3,4).

In 1992, a rhabdovirus-like virus 
was isolated from lung and kidney of 
a white-beaked dolphin (Lagenorhyn-
chus albirostris) that had beached 
along the coast of the Netherlands 
(5). Although no macroscopic or mi-
croscopic lesions were observed at 
necropsy, negative contrast electron 
microscopy showed typical rhabdo-
virus-like, bullet-shaped particles in 

Vero cell cultures that showed a fo-
cal cytopathic effect (5). After this 
rhabdovirus-like virus was injected 
intracerebrally into brains of 1-day-
old suckling mice, they died within 
5 days (5). We report genetic and 
phylogenetic characterization of a 
dolphin rhabdovirus (DRV) and eval-
uated the seroprevalence of DRV-
neutralizing antibodies by using se-
rum samples from various marine 
mammals collected during a 10-year 
period (2003–2012).

To characterize DRV, we per-
formed random sequence amplifica-
tion and deep sequencing with the 454 
GS Junior Instrument (Roche, Basel, 
Switzerland) with DRV-infected Vero 
cell supernatants as described (6). 
From this analysis, we determined the 
complete coding sequence of DRV 
covered by 42,080 of 49,292 reads 
(minimum coverage 4 reads, average 
coverage 872 reads).

Genomic termini of DRV were 
determined by using a 3′ and 5′ rapid 
amplification of cDNA ends PCR 
and Sanger sequencing of obtained 
PCR amplicons. The complete ge-
nome of DRV (GenBank accession 
no. KF958252) consists of 11,141 
nt and has a typical rhabdovirus 
gene arrangement of 5 major open 
reading frames (ORFs) in the order 
3′-nucleoprotein (N), phosphoprotein 
(P), matrix (M) protein, glycoprotein 
(G), and large (L) protein-5′ (Figure, 
panel A, Appendix, wwwnc.cdc.gov/
EID/article/20/6/13-1880-F1.htm). 
No additional ORFs ≥300 nt were 
detected. Between the major ORFs 
of DRV, intergenic sequences were 
present that ranged in size from 34 
(P–M) to 83 (G–L) nucleotides. Pu-
tative transcription initiation and 
transcription termination polyadenyl-
ation sequences were AACA(G/U) 
and AUGA7, respectively.

The deduced amino acid se-
quence of genes of DRV and several 
other rhabdoviruses were aligned by 
using MUSCLE in MEGA5 version 
5.2) (7). Ambiguous aligned regions 

were removed by using the Gblocks 
program (8). Phylogenetic analysis 
of the L and G genes was performed 
by using the neighbor-joining method 
in MEGA5 (7). This analysis showed 
that DRV is most closely related to 
fish rhabdoviruses of the genera Per-
habdovirus and Vesiculovirus and 
unassigned fish rhabdoviruses with 
strong bootstrap support (Figure, 
panels B–D, Appendix).

Deduced amino acid sequences 
of the 5 major genes had the high-
est, although weak, homology with 
those of various fish rhabdoviruses by 
pairwise identity analyses: N (48%) 
with hybrid snakehead virus (HSHV), 
Monopterus albus rhabdovirus 
(MARV), and Siniperca chautsi rhab-
dovirus (SCRV); P (18%–20%) with 
eel virus European X (EVEX), HSHV, 
MARV, and SCRV; M (27%–33%) 
with lake trout rhabdovirus, Swedish 
sea trout rhabdovirus, and EVEX; G 
(30%–32%) with perch rhabdovirus, 
lake trout rhabdovirus, Swedish sea 
trout rhabdovirus, HSHV, MARV, 
SCRV, and EVEX; and L (54%–56%) 
with perch rhabdovirus, HSHV, and 
EVEX. This close relationship with 
fish rhabdoviruses is surprising be-
cause DRV was isolated from tissues 
of a mammal and propagated in mam-
malian cell lines at 37°C, which does 
not occur with related viruses isolated 
from fish.

To evaluate whether DRV or re-
lated viruses circulate among species 
of cetaceans, we performed serologic 
screening by using a virus neutraliza-
tion assay as described (5). The speci-
ficity of this assay was tested by using 
a panel of rhabdovirus-specific anti-
sera obtained from cetaceans of vari-
ous species (5). The serum samples 
had been collected for diagnostic pur-
poses from mainly juvenile cetaceans 
stranded along the coast of the Neth-
erlands during 2003–2012. These spe-
cies included 2 Atlantic white-sided 
dolphins (Lagenorhynchus acutus), 
79 harbor porpoises (Phocoena pho-
coena), 9 striped dolphins (Stenella  
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coeruleoabla), and 6 white-beaked 
dolphins (Lagenorhynchus aIbiros-
tris). Serum samples from 145 bottle-
nose dolphins (Tursiops truncates) 
from the collection of the Dolphinari-
um Harderwijk (Harderwijk, the Neth-
erlands) were also tested. DRV-neu-
tralizing antibodies were detected in 
serum samples from 1 bottlenose dol-
phin (7%), 5 striped dolphins (55%), 
1 white-beaked dolphin (17%), and 3 
harbor porpoises (4%). These results 
suggested that DRV or closely related 
viruses continue to infect members of 
cetacean species (6).

Although rhabdovirus evolution-
ary pathways are complicated (9), our 
analysis suggests that DRV is a possible 
derivative of fish rhabdoviruses. DRV 
might have originated from an uniden-
tified fish rhabdovirus and might cycle 
between fish and marine mammals, 
similar to that suggested for cycling of 
vesicular stomatitis virus between ar-
thropods and terrestrial mammals (10). 
Future analyses of sequences from 
other marine mammal rhabdovirus se-
quences might support the validity of 
our phylogenetic analysis and result in 
creation of a new group containing ma-
rine mammal rhabdoviruses.
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Genetic and  
Ecologic Variability 
among Anaplasma 
phagocytophilum 

Strains,  
Northern Italy

To the Editor: The tick-borne 
pathogen Anaplasma phagocytophi-
lum is an increasing potential public 
health threat across Europe. Its intra-
specific genetic variability is associ-
ated with different reservoir host and 
vector tick species (1–4); however, 
the roles of various vertebrates as 
competent reservoirs of A. phagocy-
tophilum in Europe need clarification 
(1). During March 2011–June 2013, 
we studied the prevalence and genetic 
variability of A. phagocytophilum in 
821 questing Ixodes ricinus ticks (155 
adults [A], 666 nymphs [N] collected 
by standard blanket dragging) and 284 
engorged ixodid ticks (61A, 191N, 21 
larvae [L]) collected from humans, 
dogs, sheep, hunted wild ungulates, 
live-trapped birds, and rodents. Blood 
samples from 1,295 rodents (yellow-
necked mice [Apodemus flavicollis]), 
bank voles [Myodes glareolus], and 
harvest mice [Moscardinus avellanar-
ius]) were also analyzed. All animal-
handling procedures and ethical issues 


