Spatiotemporal Analysis of Guaroa Virus Diversity, Evolution, and Spread in South America

Technical Appendix

Technical Appendix Table. Source and sequence information for virus strains used in a phylogeographic modeling study of the evolution, spread, and diversity of Guaroa virus in South America*

			Geographic location of	GenBank	
		Year		Approximate GPS	accession
Virus, strain	Host	isolated	Locale	coordinates	nos.†
Guaroa					
CoH352111	Human (asymptomatic)	1956	Guaroa, Meta Department, Colombia	3.86, -73.50	KM245519–21
BeH22063	Human	1960	Pará, Brazil	-1.45, -48.46	KM245522-4
IQD8537	Human	2004	Iquitos, Loreto, Peru	-3.76, -73.26	KM245525-7
FVB0546	Human	2007	Chapare, Cochabamba Department, Bolivia	-16.67, -65.58	KM245528-30
OBT5637	Human	2007	Puerto Maldonado, Madre de Dios. Peru	-12.59, -69.20	KM245531-3
MIS0239	Human	2008	Puerto Maldonado, Madre de Dios, Peru	-12.59, -69.20	KM245534–6
FVB0840	Human	2009	Tiraque, Cochabamba	-17.43, -65.72	KM245537–9
FVB0849	Human	2009	Chapare, Cochabamba Department, Bolivia	-16.67, -65.58	KM245540-2
FVB2032	Human	2009	Chapare, Cochabamba Department, Bolivia	-16.67, -65.58	KM245543–5
FPI01900	Human	2011	Loreto, Peru	-4 23 -74 53	KM245546-8
FSJ2035	Human	2011	Chanchamayo, Peru	-11.05 -75.1	KM245549-51
ASA1165	Human	2011	Iguitos, Loreto Peru	-3.7673.26	KM245552-4
Anhembi			·	0110, 10120	
SPAr2984	Phoniomyia pilicauda mosquitos	1965	Casa Grande, São Paolo, Brazil	-23.67, -45.92	JN572064-2
Cachoeira Porteira					
BeAr328208	Sabethes glaucodaemon mosquitos	1977	Cachoeira Porteira, Pará, Brazil	–1.07, –57.04	JN968590-2
laco	Wyeomyia spp. mosquitos	1976	Sena Madureira, Acre, Brazil	-9.08, -68.67	JN572065–7
BeAr314206					
Macaua BeAr306329	Sabethes soperi mosquitos	1976	Sena Madureira, Acre, Brazil	-9.08, -68.67	JN572068-70
Sororoca	Sabethini spp. mosquitos	1961	Belem–Brasilia Highway (km 94), Pará, Brazil	-2.44, -47.51	JN572071–3
BeAr32149					
Taiassui	Sabethini spp. mosquitos	1955	Taiassui River Basin (Benevides), Pará, Brazil	–1.37, –48.24	JN572074–6
BeAro/1	Och ethini en a serviter	1055			11570077 0
BeAr278	Sabethini spp. mosquitos	1955	Belem, Para, Brazil	–1.45, –48.46	JN572077–9
Wyeomyia virus	Wyeomyia melanocephala mosquitos	1940	Villavicencio, Meta, Columbia	4.15, –73.64	JN572080–2
Original					
Wyeomyia virus	Psorophora albipes mosquitos	1955	Melajo Forest Reserve, Trinidad	10.64, -61.08	JN801033–5
TRVL8349					

			Geographic location of isolation		GenBank
		Year		Approximate GPS	accession
Virus, strain	Host	isolated	Locale	coordinates	nos.†
Wyeomyia virus					
Darien	Human	1963	Pan American Highway, Darien Province, Panama	8.49, -77.97	JN801036-8

*GPS, Global Positioning System.

†Genomic sequences for all Guaroa virus strains were determined as a part of this study.

Technical Appendix Figure. Phylogeographic analysis of the spread of GROV, WYOV lineage, and AMBV lineage. Bayesian coalescent phylogenies incorporating sample times and location were calculated on the basis of the nucleoprotein open-reading frame dataset by using BEAST v1.8.0 (http://beast.bio.ed.ac.uk/) and then input into SPREAD v1.0.6 (*1*) to calculate ancestral locations for all antecedent nodes in the GROV and WYOV groups. The bracketed values at nodes represent the estimated locations of the ancestral sequences. The numbers above the branches are posterior probabilities of the subtended clades; p>0.95 represents significant support for that group. Red indicates

Guaroa viruses; blue indicates Wyeomyia group viruses (Wyeomyia lineage); and green indicates Wyeomyia group viruses (Anhembi lineage). AMBV, Anhembi virus; CPOV, Cachoeira Porteira virus; GROV, Guaroa virus; IACOV, Iaco virus; MCAV, Macaua virus; SORV, Sororoca virus; TAIAV, Taiassui virus; TUCV, Tucunduba virus; WYOV, Wyeomyia virus. Scale bar represents estimated dates for various events.

Reference

 Bielejec F, Rambaut A, Suchard MA, Lemey P. SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics. 2011;27:2910–2. <u>PubMed</u> <u>http://dx.doi.org/10.1093/bioinformatics/btr481</u>