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To	 guide	 the	 collection	 of	 data	 under	 emergent	 epidemic	
conditions,	we	reviewed	compartmental	models	of	historical	
Ebola	outbreaks	to	determine	their	implications	and	limita-
tions.	We	identified	future	modeling	directions	and	propose	
that	the	minimal	epidemiologic	dataset	for	Ebola	model	con-
struction	comprises	duration	of	incubation	period	and	symp-
tomatic	period,	distribution	of	secondary	cases	by	infection	
setting,	and	compliance	with	intervention	recommendations.

Mathematical models are used to generate epidemic 
projections under different scenarios, provide indica-

tors of epidemic potential, and highlight essential needs for 
data. To aid the interventions in the 2014 Ebola epidem-
ic in West Africa, in September 2014 we reviewed mod-
els of historical Ebola virus (EBOV) outbreaks (Table 1)  
and their estimated parameters (Table 2; online Techni-
cal Appendix, http://wwwnc.cdc.gov/EID/article/21/8/14-
1613-Techapp1.pdf).

The Review
Chowell et al. (1) developed a deterministic SEIR (suscep-
tible-exposed-infectious-recovered) compartmental model 
and a stochastic continuous-time Markov chain version 
(Figure). A transmission coefficient, β0, was assumed to be 
constant before interventions and reduced transmission af-
ter intervention at a constant rate, β1. The model was fit to 
cases from the 1995 Democratic Republic of Congo (DRC) 
outbreak and the 2000 Uganda outbreak by using least 
squares. The final size was sensitive to the timing of control 
measures. The authors concluded that a 2-week delay in the 
timing of interventions would have increased the final size 
of the outbreak by a factor of 2.

Lekone and Finkenstädt (4) modified the model of 
Chowell et al. for discrete-time, stochastic progression. 
They fit their model to daily incidence and mortality time 
series from the 1995 DRC outbreak using Markov chain 
Monte Carlo. R0 was estimated by using vague and infor-
mative prior distributions. This exercise concluded that 

interventions shortened the epidemic from 950 days to 
200 days and reduced total number of cases from 3.5 mil-
lion to just over 300. Effective reproduction number (RE) 
was estimated to decrease to <1 five days after interven-
tion onset.

Legrand et al. (5) accounted for transmission in dif-
ferent contexts through a stochastic model with 6 compart-
ments: susceptible, exposed, infectious, hospitalized, dead-
but-not-yet-buried, removed (Figure). Three transmission 
coefficients corresponded to community transmission, 
nosocomial transmission, and transmission at funerals. In-
terventions were assumed to be completely efficient from 
their onset: no transmission occurred at burials and hospi-
tals, and community transmission was reduced by a multi-
plier estimated by model fitting. Parameters were estimated 
by fitting the model to incidence data (DRC, 1995; Uganda, 
2000), by using approximate maximum likelihood, and an 
expression for R0 was derived. After interventions, com-
munity transmission was estimated to have been reduced to 
88% and 12% of its initial value in the DRC and Uganda 
outbreaks, respectively, with respective RE of 0.4 (95% CI 
0.3–0.6) and 0.3 (95% CI 0.2–0.4). The authors acknowl-
edged that the 95% CIs around transmission and efficacy 
estimates were wide and conducted a sensitivity analysis 
of intervention parameters. This analysis indicated that 
community transmission was key to epidemic dynamics in 
Uganda, whereas funerals contributed more to transmission 
in the DRC. Rapid hospitalization significantly reduced 
community transmission and barrier nursing practices 
along with effective isolation of Ebola patients controlled 
the epidemics (5).

These models (1,4,5) shared certain features. They as-
sumed homogeneous mixing of the population, exponen-
tially or geometrically distributed incubation and infectious 
periods, and a sudden decay in transmission after interven-
tion. None accounted for underreporting. Future exercises 
should explore the consequences of these assumptions. 
With ideal data, fitted models would be stress-tested to as-
sess their validity, for instance challenging models to pre-
dict out-of-fit data.

Three additional studies estimated incubation period 
or R0 by using statistical models. Eichner et al. (10) as-
sumed a log–normally distributed incubation period. Fer-
rari et al. (11) used maximum likelihood with a chain bino-
mial distribution and regression to estimate R0. White and 
Pagano (12) assumed that the number of secondary cases 
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produced by a patient followed a Poisson distribution, with 
expected value R0.

Collectively, these studies underscore that practical 
decisions in modeling dictate trade-offs between fitting 
to limited data and explicit representation of reality, in-
cluding interventions. A model with a single transmission 
rate might fit well to data but might not be useful for deci-
sion making that evaluates intervention effects in different 
transmission contexts. A model with 3 transmission rates 
might represent transmission in community, nosocomial, 
and funeral contexts (e.g., [5]), but the 3 parameters are un-
likely to be uniquely identifiable. Because EBOV typically 
amplifies during nosocomial transmission, a model with 2 
transmission parameters (community transmission, com-
prising funeral and household transmission in 1 parameter, 

and nosocomial transmission) might represent the best 
compromise. Such a model would enable interventions, 
such as personal protective equipment and efficient hos-
pitalization of persons with community-acquired EBOV 
infection, to be considered.

Other features are important for understanding the 
probable paths of small outbreaks. These include non-
exponential incubation and infectious periods (13) and 
individual heterogeneity in the generation of secondary 
infections, including “super-spreaders” (14). The models 
reviewed are approximations to these processes. The ex-
tent to which these approximations introduce bias could 
be understood by developing a range of models, perhaps 
using versions of the chain binomial model or other gener-
alized contagion processes.

  
Table 1. Compartmental	models	of	historical	Ebola	virus	outbreaks 

Feature 
Model 

Chowell	et	al.	(1) Lekone	and	Finkenstädt	(4) Legrand	et	al.	(5) 
Outbreak* DRC 1995, Uganda 2000† DRC 1995‡ DRC	1995,	Uganda	2000§ 
Assumed    
 Homogeneous	random	mixing Yes Yes Yes 
 All	human-to-human	contact Yes Yes Yes 
Considered    
 Nosocomial	transmission No No Yes 
 Burial	transmission No No Yes 
No.	transmission	parameters 2	(preintervention decays	to	

postintervention) 
1	(decay	to	0) 3	(community,	nosocomial,	burial) 

Distribution Exponential Geometric Exponential 
Underreporting	accounted	for No No No 
*The	DRC	outbreak	was	caused	by	the	Zaire	strain;	the	Uganda	outbreak	was	caused	by	the	Sudan	strain.	DRC,	Democratic	Republic	of	Congo. 
†Data sources: DRC	1995	(2), Uganda	2000	(3). 
‡Data	source:	DRC	1995	(2). 
§Data	sources: DRC	1995	(2,6–8), Uganda	2000	(3,9). 

 

 

 

 
Table 2. Estimated	values	of	parameters	as	identified	in	the	Ebola	modeling	articles* 

Reference Outbreak Model R0 estimate 
Incubation	

period, d (SD)† 
Infectious	period,	

d	(SD) 
Chowell	et	al.	(1) DRC	1995 SEIR‡ 1.83	(SD 0.06) 5.3	(0.23) 5.61	(0.19) 
 Uganda	2000 SEIR‡ 1.34	(SD 0.03) 3.35	(0.49) 3.5	(0.67) 
Lekone	and	
Finkenstädt	(4) 

DRC	1995 SEIR,	MCMC	(vague	prior) 1.383	(SD 0.127) 9.431	(0.620) 5.712	(0.548) 

 DRC	1995 SEIR,	MCMC	(informative	prior) 1.359	(SD 0.128) 10.11	(0.713) 6.523	(0.564) 
Legrand	et	al.	(5) DRC	1995 Stochastic	compartmental	model	

(SEIHFR) 
2.7	(95%	CI	1.9–2.8)   

 Uganda	2000 Stochastic	compartmental	model	
(SEIHFR) 

2.7	(95%	CI	2.5–4.1)   

Eichner	et	al.	(10) DRC	1995 Incubation	period	estimate	based	
on	parameterized	lognormal	

distribution	function 
 12.7	(4.31)  

Ferrari	et	al.	(11) DRC	1995 MLE 3.65	 
(95%	CI	3.05–4.33) 

  

 DRC	1995 Regression 3.07§   
 Uganda	2000 MLE 1.79	 

(95%	CI	1.52–2.30) 
  

 Uganda	2000 Regression 2.13§   
White	and	
Pagano	(12) 

DRC	1995 MLE 1.93	 
(95%	CI	1.74–2.78) 

  

*DRC,	Democratic	Republic	of	Congo;	MCMC:	Markov	chain	Monte	Carlo;	MLE,	maximum-likelihood	estimation;	SEIR,	susceptible-exposed-infectious-
removed;	SEIHFR,	susceptible-exposed-infectious-hospitalized-funeral-removed.	Blank	cells	indicate	that	no	information	was	provided	from	the	 
original	study. 
†The incubation period for Ebola virus is believed to be the same as its latent period, i.e., infected persons become infectious	only	when	symptomatic. 
‡Combination	differential	equation	model	and	Markov	chain	model. 
§Neither	CIs	nor	SDs were	provided	in	the	study. 
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Another issue that has not been studied is the role of spa-
tial scale. All extensive EBOV outbreaks involved multiple 
scales of transmission. At the smallest scale, persons most 
at risk for infection are those caring for an Ebola patient. 
Understanding these household contacts helps estimate 
outbreak size. Human settlements constitute a “household 
of households.” Transmission occurs among households 
in communities, at hospitals, or at funerals. Understanding 
these between-household contacts is needed to determine 
the outbreak’s extent. Finally, understanding connections 
between settlements by human movements is needed to de-
termine the paths and speed of large-scale spatial spread and 
therefore the total infected area and domain for surveillance 
and monitoring. Although the assumption of population ho-
mogeneity can be justified for models of historical EBOV 
outbreaks, given the limited geographic extent of those out-
breaks, models for the 2014 outbreak might need to address 
heterogeneity in population density and human movements 
because of the extensive geography involved.

Two issues new to the 2014 EBOV epidemic are under-
reporting and compliance. To assess underreporting, perhaps 
comprehensive contact tracing can be performed in a small 
number of locales and extrapolated. If cases can be identi-
fied through 2 independent routes, then case matching can 
be used to identify the total number of cases (15). Concern-
ing compliance, the fraction of patients admitted to hospitals 
and, of those remaining in the community, the fraction of de-
cedents with safe burials should be identified. Compliance of 
personal protective equipment among health care workers is 
central to understanding the role of nosocomial transmission.

Conclusions
Model fitting is craft as well as science. Modeling demands 
decisions, including what mathematical representations to 

use, the type and magnitude of variation to be considered, 
and the values that can be taken as given versus the values 
still to be estimated. In the face of data scarcity, we suggest 
that construction of models of the 2014 outbreak would 
have benefited from a minimal dataset that included 1) the 
mean and variance of the incubation period and symptom-
atic period, respectively; 2) the probability distribution of 
secondary cases by infection setting; and 3) compliance 
with recommendations. For secondary cases, in addition to 
the average, the commonness of outliers (super-spreaders), 
the frequency of zeros, and the variance in the distribution 
need to be known.
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