# Avian Influenza A Virus Infection among Workers at Live Poultry Markets, China, 2013–2016

# **Technical Appendix**

# Methods

#### Serologic Assays

Hemagglutination-inhibition (HI) assay was performed as previously described (*1*). Briefly, after treatment by 1:4 solution of receptor-destroying enzyme (Denka Seiken Co Ltd, Tokyo, Japan) at 37°C for 18 h and then heat-inactivated at 56°C for 30 min to eliminate nonspecific inhibitors, 2-fold serial dilutions of serum (from 1:10 to 1:1,280) were tested against 8 hemagglutinin (HA) units of antigen using 1% horse red blood cells. For the H9N2 virus, 0.5% turkey red cells were used as the receptor of H9N2 virus circulation in China has changed to the human-like receptor. The HI titers were defined as the reciprocal of the highest serum dilution that completely inhibited hemagglutination.

Serum with HI titer  $\geq 1:10$  were further confirmed by microneutralization (MN) assay as previous described (2) using a culture of MDCK cells as with minor adaption. In brief, 2-fold serial dilutions of serum from 1:10 to 1:1,280 were incubated with 100 median 50% tissue culture infective dose of the H7N9 virus. 100 µL MDCK cells suspension with  $2.0 \times 10^5$ cells/mL to each well and the plate incubated at 37°C with 5% CO<sub>2</sub> for 24 h, followed by ELISA to determine virus titer. The MN titer was expressed as the reciprocal of the highest dilution of serum with optical density (OD) <X, where X = [(average OD of virus control wells) + (average OD of cell control wells)]/2. The MN titer as the reciprocal of the highest serum dilution that yielded >50% neutralization. For final titers <1:10 we assigned a value of 1:5 (seronegative).

## Molecular Detection, Viral Isolation, and Sequencing

The viral RNA of each sample was extracted (Cat. No. 9766, TaKaRa, Dalian, China) and was subsequently screened for influenza virus A virus (IAV) by real-time reverse

transcription PCR (rRT-PCR) (cat. no. 56046, TaKaRa, Dalian, China) targeting the influenza matrix genome segment (3). These IAV-positive specimens were further subtyped for avian influenza H5, H7, and H9 as previously described (3,4). Meanwhile, IAV-positive specimens were inoculated into 9–11-day specific pathogen–free embryonated chicken eggs for virus isolation.

The full genome of cultured isolates was amplified (cat: 055A, TaKaRa, Dalian, China) using a pair of universal primers that amplify full-length viral genome sequences (*5*). PCR amplicons were purified (cat. no. 28004, QIAGEN) and then sequenced on Ion Torrent Personal Genome Machine (PGM, Life Technologies, South San Francisco, CA, USA). For samples that failed for virus isolation, HA, neuraminidase (NA), and matrix (M) genes were tried to amplify using universal primers (*6*) for sequencing. The sequence data were deposited in Global Initiative on Sharing All Influenza Data (GISAID) (accession no. EPI\_ISL\_277027–277050, EPI\_ISL\_277052–277064, and EPI\_ISL\_277093–277127).

#### **Phylogenetic Analysis**

To understand the molecular epidemiology of identified viruses in the study, we first examined  $\geq 100$  closely related sequences for each gene in GenBank and GISAID to infer the overall topology, and then we removed a few extreme outlying sequences from the trees. Maximum-likelihood phylogenetic trees were inferred for available gene segments by using MEGA software, version 6.06 (http://www.megasoftware.net). To assess the robustness of individual nodes on phylogenetic trees, we used a bootstrap resampling process (1,000 replications), the neighbor-joining method, and a best-fit, general time-reversible model of nucleotide substitution.

#### Results

During July 2013–June 2016, active surveillance of IAVs at 9 LPMs was conducted in Wuxi City, Jiangsu Province, China. A total of 3,121 samples (including 2,010 cloacal swabs, 590 environment swabs, and 521 fecal/slurry samples) were collected. A total of 726 (23.3%) samples, including 466 (23.2%) cloacal swabs, 145 (24.5%) environment swabs, and 115 (22.0%) fecal/slurry samples were rRT-PCR positive for IAVs. Of these 726 IAV-positive specimens, 229 (31.5%), 27 (3.7%), and 25 (3.4%) were single infection with H9, H7, and H5

subtype virus, respectively. co-infections of H7 and H9; H5 and H9; and H5, H7, and H9 were detected in 11 (1.5%), 2 (0.3%), and 1 (0.1%) specimens, respectively. A total of 45 samples were successfully isolated, and the whole-genome sequence was sequenced. The HA, NA, and M genes of 33 original specimens that failed for virus isolation were sequenced. The sequencing data revealed 10 subtypes of AIVs in live poultry markets, including H7N9 (n = 5), H9N2 (n = 45), H5N6 (n = 5), H5N1 (n = 6), H5N2 (n = 6), H11N2 (n = 3), H3N8 (n = 3), H1N1 (n = 1), H2N2 (n = 1), and H5N8 (n = 3).

The phylogeny of the H7N9 viruses showed that they all were derived from the Yangtze River Delta lineage associated with the 2013 outbreak of H7N9 in southern China (echnical Appendix Figure, panel A). For the H9N2 viruses, their HA and NA genes were fell into the Y280-like lineage, while internal genes were closely related with those of H9N2viruses in China except for the polymerase basic 2 gene of A/chicken/Wuxi/6082/2015 that was closely related to H5N2 and H5N8 viruses identified in poultry and wild birds, suggestive of reassortment (Technical Appendix Figure, panel B). The 3 H5N6 viruses fell into Jiangxi lineage, which belonged to clade 2.3.4.4, and all gene segments of the H5N6 viruses were closely related to those H5N6 viruses circulating in China and Japan but differed from our previously reported 2 Sichuan lineage–like H5N6 viruses (7) (Technical Appendix Figure, panel C). While the 4 H5N1 viruses were similar to our previously reported (7) and those of H5N1 viruses circulating in China and Vietnam, the M gene was closely related to those H5N1, and H5N1 containing M gene of Y280-like H9N2 viruses identified in China (Technical Appendix Figure, panel D). The HA genes of 5 newly identified H5N2 viruses fell into clade 2.3.4.4 and clade 7. The NA gene of these viruses was closely related to HxN2 viruses circulating in China and Vietnam, while the M gene was closely related to viruses of Y280-like H9N2 and H5 subtypes circulating in China, suggesting multiple reassortment occurred (Technical Appendix Figure, panel E). The HA gene of the 3 H11N2 viruses was closely related to H11Ny subtype viruses circulating in China and Thailand. Whereas the NA and 6 internal genes were derived from the HxN2 subtypes and wild bird origin subtypes circulating in Asian, respectively, indicating that it was in fact derived from multiple and interspecies reassortment events (Technical Appendix Figure, panel F). The HA gene of all three H3N8 viruses was Eurasian lineage and was closely related to those H3Ny subtypes in China, whereas the NA gene fell into Eurasian and North American lineage. The internal genes of the H3N8 viruses were most likely derived from HxNy subtypes in wild birds,

H3N2 and 2.3.2.1c H5N1 viruses in poultry, suggesting multiple and interspecies reassortment (Technical Appendix Figure, panel G). The HA gene of the H1N1 virus was closely related to H1 from multiple subtypes circulating in wild bird and belonged to the Eurasian avian lineage. However, the NA gene was closely related to clade 2.3.2.1c H5N1 viruses, while the M gene was closely related to H5N1 viruses containing M segment of Y280-like H9N2 viruses circulating in China, suggesting an interspecies reassortment occurred among H1Ny subtypes, H5N1, and H9N2 viruses (Technical Appendix Figure, panel H).

## References

- World Health Organization. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011 [cited 2011 Dec 10]. http://apps.who.int/iris/bitstream/10665/44518/1/9789241548090\_eng.pdf
- Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim W, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol. 1999;37:937–43. <u>PubMed</u>
- 3. World Health Organization. Real-time RT-PCR protocol for the detection of avian influenza A(H7N9) virus. 15 April 2013 [cited 2017 May 27]. http://www.who.int/influenza/gisrs\_laboratory/cnic\_realtime\_rt\_pcr\_protocol\_a\_h7n9.pdf?ua=1
- 4. World Health Organization. WHO information for molecular diagnosis of influenza virus—update. [cited 2017 May 27]. http://www.who.int/influenza/gisrs\_laboratory/molecular\_diagnosis/en/
- 5. Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83:10309–13. <u>PubMedhttp://dx.doi.org/10.1128/JVI.01109-09</u>
- 6. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:2275–89. <u>PubMedhttp://dx.doi.org/10.1007/s007050170002</u>
- 7. Ma MJ, Chen SH, Wang GL, Zhao T, Qian YH, Wu MN, et al. Novel highly pathogenic avian H5 influenza A viruses in live poultry markets, Wuxi City, China, 2013–2014. Open Forum Infect Dis. 2016;3:ofw054. <u>PubMed http://dx.doi.org/10.1093/ofid/ofw054</u>

|                            |               |            |               | 20     | 14       |               | 2015     |        |          |                | 2016     |        |          |              |          |        |
|----------------------------|---------------|------------|---------------|--------|----------|---------------|----------|--------|----------|----------------|----------|--------|----------|--------------|----------|--------|
|                            | Poultry       | Swine      |               | р      | Poultry  | Swine         |          | р      | Poultry  | Swine          |          | р      | Poultry  | Swine        |          | р      |
| Characteristic             | workers       | workers    | Controls      | value  | workers  | workers       | Controls | value  | workers  | workers        | Controls | value  | workers  | workers      | Controls | value  |
| Enrollees, no.             |               |            |               |        |          |               |          |        |          |                |          |        |          |              |          |        |
| Total                      | 511           | 569        | 915           |        | 533      | 589           | 881      |        | 535      | 501            | 855      |        | 491      | 367          | 785      |        |
| Re-enrollees               | NA            | NA         | NA            |        | 294      | 294           | 549      |        | 369      | 340            | 579      |        | 443      | 313          | 763      |        |
| New enrollees              | NA            | NA         | NA            |        | 239      | 295           | 332      |        | 166      | 161            | 276      |        | 48       | 54           | 22       |        |
| Age, y, mean $\pm$ SD      | 46.8 ±        | $45.4 \pm$ | 41.6 ±        | <0.001 | 48.6 ±   | 46.5 ±        | 42.6 ±   | <0.001 | 47.9 ±   | 47.0 ±         | 42.9 ±   | <0.001 | 49.4 ±   | 48.0 ±       | 44.1 ±   | <0.001 |
|                            | 11.3          | 10.4       | 11.0          |        | 11.1     | 11.3          | 10.8     |        | 11.4     | 11.6           | 10.6     |        | 10.9     | 10.2         | 10.5     |        |
| Age group, y               |               |            |               |        |          |               |          |        |          |                |          |        |          |              |          |        |
| 18–30                      | 47 (9.2)      | 56 (9.8)   | 158           | <0.001 | 31 (5.8) | 58 (9.8)      | 129      | <0.001 | 48 (9.0) | 48 (9.6)       | 116      | <0.001 | 32 (6.5) | 21 (5.6)     | 94       | <0.001 |
|                            |               |            | (17.3)        |        |          |               | (14.6)   |        |          |                | (13.5)   |        |          |              | (12.0)   |        |
| 31–40                      | 80 (15.7)     | 97         | 229           |        | 71       | 91            | 208      |        | 70       | 65             | 200      |        | 61       | 42           | 176      |        |
|                            |               | (17.1)     | (25.0)        |        | (13.3)   | (15.5)        | (23.6)   |        | (13.1)   | (13.0)         | (23.4)   |        | (12.4)   | (11.4)       | (22.4)   |        |
| 41–50                      | 206           | 255        | 354           |        | 217      | 246           | 353      |        | 204      | 214            | 345      |        | 181      | 172          | 309      |        |
|                            | (40.3)        | (44.8)     | (38.7)        |        | (40.7)   | (41.8)        | (40.1)   |        | (38.1)   | (42.6)         | (40.3)   |        | (36.9)   | (47.1)       | (39.4)   |        |
| 51–60                      | 120           | 119        | 140           |        | 132      | 128           | 158      |        | 137      | 111            | 155      |        | 131      | 97           | 154      |        |
|                            | (23.4)        | (20.9)     | (15.3)        |        | (24.8)   | (21.7)        | (17.9)   |        | (25.6)   | (22.2)         | (18.2)   |        | (26.7)   | (26.4)       | (19.6)   |        |
| >60                        | 58 (11.4)     | 42 (7.4)   | 34 (3.7)      |        | 82       | 66            | 33 (3.8) |        | 76       | 63             | 39 (4.6) |        | 86       | 35 (9.5)     | 52 (6.6) |        |
|                            |               |            |               |        | (15.4)   | (11.2)        |          |        | (14.2)   | (12.6)         |          |        | (17.5)   |              |          |        |
| Sex, no. (%)               |               |            |               |        |          |               |          |        |          |                |          |        |          |              |          |        |
| M                          | 251           | 348        | 413           | <0.001 | 256      | 379           | 407      | <0.001 | 253      | 318            | 447      | <0.001 | 235      | 237          | 399      | <0.001 |
|                            | (49.1)        | (61.2)     | (45.1)        |        | (48.0)   | (64.4)        | (46.2)   |        | (47.3)   | (63.5)         | (52.3)   |        | (47.9)   | (64.6)       | (50.8)   |        |
| F                          | 260           | 221        | 502           |        | 277      | 210           | 474      |        | 282      | 183            | 408      |        | 256      | 130          | 386      |        |
|                            | (50.9)        | (38.8)     | (54.9)        |        | (52.0)   | (35.6)        | (53.8)   |        | (52.7)   | (36.5)         | (47.7)   |        | (52.1)   | (35.4)       | (49.2)   |        |
| Education, no. (%)         |               |            |               |        |          |               |          |        |          |                |          |        |          |              |          |        |
| <u>&lt;</u> Primary school | 185           | 228        | 244           | <0.001 | 209      | 215           | 252      | <0.001 | 196      | 176            | 241      | <0.001 | 176      | 140          | 219      | <0.001 |
|                            | (36.2)        | (40.1)     | (26.7)        |        | (39.2)   | (36.5)        | (28.6)   |        | (36.6)   | (35.1)         | (28.2)   |        | (35.9)   | (38.1)       | (27.9)   |        |
| Middle school              | 305           | 327        | 579           |        | 312      | 359           | 541      |        | 331      | 311            | 543      |        | 303      | 222          | 494      |        |
| o "                        | (59.7)        | (57.5)     | (63.3)        |        | (58.5)   | (61.0)        | (61.4)   |        | (61.9)   | (62.1)         | (63.5)   |        | (61.7)   | (60.5)       | (62.9)   |        |
| <u>&gt;</u> College        | 21 (4.1)      | 14 (2.5)   | 92            |        | 12 (2.3) | 15 (2.5)      | 88       |        | 8 (1.5)  | 14 (2.8)       | 71 (8.3) |        | 12 (2.4) | 5 (1.4)      | 72 (9.2) |        |
| Manthlesser                | (0())         |            | (10.0)        |        |          |               | (10.0)   |        |          |                |          |        |          |              |          |        |
| Monthly cost of food, ho   | ). (%)T       |            | 44 (4 5)      | .0.004 | 44 (0.0) | <u> </u>      | 44 (4 7) | 0.004  | 20 (5 2) | 22 (0 7)       | 22 (2.0) | 0.000  | 00 (4 5) | 44 (2.0)     | 00 (0 0) | 0.000  |
| <500                       | 29 (5.8)      | 50 (8.8)   | 41 (4.5)      | <0.001 | 44 (8.3) | 08<br>(11 7)  | 41 (4.7) | <0.001 | 28 (5.3) | 33 (6.7)       | 33 (3.9) | 0.002  | 22 (4.5) | 14 (3.9)     | 26 (3.3) | 0.003  |
| 500 1 000                  | 150           | 240        | 161           |        | 160      | (11.7)        | 017      |        | 140      | 150            | 014      |        | 100      | 05           | 101      |        |
| 500-1,000                  | (20.6)        | (27.0)     | 101<br>(17.0) |        | (22.1)   | (20.2)        | (24.7)   |        | (29.1)   | (22.4)         | (25.4)   |        | (27.2)   | 00<br>(00 E) | (24.4)   |        |
| 1 000 1 500                | (30.0)        | (37.0)     | (17.0)        |        | (32.1)   | (29.3)        | (24.7)   |        | (20.1)   | (32.4)         | (23.1)   |        | (27.3)   | (23.5)       | (24.4)   |        |
| 1,000-1,500                | (25.2)        | (21.2)     | (11.2)        |        | (26.9)   | 200<br>(25 0) | (247)    |        | (27.1)   | (26.0)         | (26.4)   |        | (42.2)   | (22.2)       | (26.7)   |        |
| -1 500                     | (35.2)        | (31.2)     | (41.2)        |        | (30.0)   | (35.9)        | (34.7)   |        | (37.1)   | (30.0)         | (30.4)   |        | (42.2)   | (33.2)       | (30.7)   |        |
| <1,500                     | (20.4)        | (22.0)     | 330<br>(26 E) |        | (22.9)   | (22.4)        | (25.0)   |        | (20.6)   | (24.9)         | (24.6)   |        | (26.0)   | (20.2)       | (25.6)   |        |
| Influenza vaccination in   | <u>(20.4)</u> | (22.9)     | (30.3)        |        | (22.0)   | (23.1)        | (30.9)   |        | (29.0)   | (24.0)         | (34.0)   |        | (20.0)   | (39.3)       | (33.0)   |        |
| Vac                        | 10 (2 0)      | 16 (2 0)   | 14(1.6)       | 0.23   | 2(0 4)   | 3 (0 5)       | 3 (0 3)  | 0 90   | 9 (1 7)  | 2(04)          | 1 (0 1)  | 0.002  | 5 (1 0)  | 2 (0 5)      | 1 (0 1)  | 0.06   |
| No                         | 492           | 541        | 878           | 0.20   | 525      | 584           | 875      | 0.00   | 512      | 2 (0.4)<br>107 | 847      | 0.002  | 477      | 2 (0.0)      | 782      | 0.00   |
|                            | (98.0)        | (97 1)     | (98.4)        |        | (99.6)   | (99 5)        | (99.7)   |        | (98.3)   | (99 6)         | (99 9)   |        | (99 0)   | (99 5)       | (99.9)   |        |
|                            | (00.0)        | (37.1)     | (50.7)        |        | (00.0)   | (00.0)        | (33.1)   |        | (00.0)   | (00.0)         | (00.0)   |        | (00.0)   | (00.0)       | (00.0)   |        |

Technical Appendix Table 1. Demographic characteristics of study participants, eastern China, 2013–2016\*

Tobacco use, no. (%)†

|                            | 2013    |         |          | 2014   |         |         |          | 2015   |         |         |          | 2016   |         |         |          |        |
|----------------------------|---------|---------|----------|--------|---------|---------|----------|--------|---------|---------|----------|--------|---------|---------|----------|--------|
|                            | Poultry | Swine   |          | р      |
| Characteristic             | workers | workers | Controls | value  |
| Yes                        | 143     | 190     | 212      | <0.001 | 134     | 210     | 193      | <0.001 | 118     | 168     | 208      | <0.001 | 107     | 119     | 182      | <0.001 |
|                            | (28.0)  | (33.4)  | (23.2)   |        | (25.3)  | (35.8)  | (21.9)   |        | (22.3)  | (34.0)  | (25.0)   |        | (22.2)  | (32.5)  | (23.4)   |        |
| No                         | 368     | 379     | 703      |        | 396     | 377     | 688      |        | 412     | 326     | 624      |        | 374     | 247     | 597      |        |
|                            | (72.0)  | (66.6)  | (76.8)   |        | (74.7)  | (64.2)  | (78.1)   |        | (77.7)  | (66.0)  | (75.0)   |        | (77.8)  | (67.5)  | (76.6)   |        |
| ILI in past 12 mo, no. (%) | †       |         |          |        |         |         |          |        |         |         |          |        |         |         |          |        |
| Yes                        | 180     | 168     | 216      | <0.001 | 173     | 192     | 283      | 0.96   | 155     | 177     | 275      | 0.08   | 126     | 111     | 260      | 0.02   |
|                            | (35.8)  | (29.7)  | (23.7)   |        | (32.7)  | (32.8)  | (32.2)   |        | (29.0)  | (35.5)  | (32.3)   |        | (25.7)  | (30.2)  | (33.1)   |        |
| No                         | 323     | 397     | 695      |        | 356     | 394     | 597      |        | 379     | 321     | 577      |        | 364     | 256     | 525      |        |
|                            | (64.2)  | (70.3)  | (76.3)   |        | (67.3)  | (67.2)  | (67.8)   |        | (71.0)  | (64.5)  | (67.7)   |        | (74.3)  | (69.8)  | (66.9)   |        |
| ILI of family members, no  | . (%)†  |         |          |        |         |         |          |        |         |         |          |        |         |         |          |        |
| Yes                        | 144     | 105     | 170      | <0.001 | 144     | 165     | 225      | 0.56   | 115     | 127     | 207      | 0.30   | 97      | 75      | 203      | 0.02   |
|                            | (28.6)  | (18.8)  | (18.7)   |        | (27.8)  | (28.1)  | (25.8)   |        | (21.5)  | (25.4)  | (24.5)   |        | (19.8)  | (20.5)  | (26.0)   |        |
| No                         | 359     | 454     | 738      |        | 374     | 422     | 647      |        | 419     | 373     | 639      |        | 394     | 291     | 578      |        |
|                            | (71.4)  | (81.2)  | (81.3)   |        | (72.2)  | (71.9)  | (74.2)   |        | (78.5)  | (74.6)  | (75.5)   |        | (80.2)  | (79.5)  | (74.0)   |        |

\*ILI, influenza-like illness; NA, not available. †Variable has missing data; The unit of cost is Chinses RMB.

|                        | , <u></u>  |                             | Chronic medical    | ILI in past | MN titer |      |      |      |  |  |
|------------------------|------------|-----------------------------|--------------------|-------------|----------|------|------|------|--|--|
| Virus, participant no. | Age, v/sex | Occupation                  | condition          | 12 mo       | 2013     | 2014 | 2015 | 2016 |  |  |
| H7N9                   | 0 / 1      | •                           |                    |             |          |      |      |      |  |  |
| 1                      | 28/F       | Chicken slaughtering        | No                 | Yes         | 40       | 320  | 5    | 5    |  |  |
| 2                      | 41/F       | Chicken slaughtering        | No                 | No          | 5        | 5    | 320  | NA   |  |  |
| 3                      | 63/F       | Retired (Control)           | Hypertension       | No          | 20       | 80   | NA   | NA   |  |  |
| 31                     | 50/F       | Chicken slaughtering        | No                 | No          | NA       | 320  | NA   | NA   |  |  |
| 32                     | 26/F       | Chicken slaughtering        | No                 | Yes         | NA       | 80   | NA   | NA   |  |  |
| 33                     | 51/F       | Chicken slaughtering        | No                 | No          | 320      | 5    | 5    | 5    |  |  |
| 34                     | 45/M       | Chicken seller              | Chronic bronchitis | No          | 160      | 5    | 5    | 5    |  |  |
| 35                     | 49/F       | Chicken/duck seller         | No                 | No          | NA       | NA   | 160  | 5    |  |  |
| 36                     | 40/M       | Chicken/pigeon seller       | No                 | Yes         | NA       | NA   | 160  | 5    |  |  |
| 37                     | 42/M       | Chicken slaughtering        | No                 | No          | 160      | NA   | NA   | NA   |  |  |
| 38                     | 61/M       | Pig slaughtering            | No                 | No          | NA       | 160  | NA   | NA   |  |  |
| 39                     | 59/M       | Pork seller                 | No                 | No          | NA       | NA   | NA   | 160  |  |  |
| 40                     | 49/F       | Officer (Control)           | No                 | Yes         | 80       | NA   | NA   | NA   |  |  |
| 41                     | 46/F       | Officer (Control)           | No                 | No          | 80       | NA   | NA   | NA   |  |  |
| 42                     | 57/F       | Officer (Control)           | No                 | No          | NA       | NA   | NA   | 80   |  |  |
| H9N2                   |            |                             |                    |             |          |      |      |      |  |  |
| 4                      | 48/F       | Chicken backyard grower     | No                 | No          | 5        | 5    | 80   | 40   |  |  |
| 5                      | 28/M       | Chicken raising             | No                 | No          | NA       | 5    | 80   | 80   |  |  |
| 6                      | 51/F       | Chicken raising             | No                 | No          | 5        | 5    | 5    | 80   |  |  |
| 7                      | 47/F       | Chicken seller              | No                 | No          | 5        | 20   | 80   | 40   |  |  |
| 8                      | 47/M       | Chicken seller              | No                 | No          | 5        | 5    | 160  | NA   |  |  |
| 9                      | 46/M       | Chicken seller              | No                 | No          | 5        | 5    | 160  | NA   |  |  |
| 10                     | 51/M       | Chicken seller              | Chronic bronchitis | No          | 5        | 40   | 160  | NA   |  |  |
| 11                     | 49/M       | Chicken/duck seller         | Diabetes           | No          | NA       | NA   | 20   | 80   |  |  |
| 12                     | 59/F       | Chicken/duck seller         | No                 | Yes         | 5        | 5    | 80   | 320  |  |  |
| 13                     | 39/F       | Chicken/duck seller         | No                 | No          | 5        | NA   | 20   | 80   |  |  |
| 14                     | 27/F       | Chicken/goose seller        | No                 | No          | 5        | 320  | 40   | 40   |  |  |
| 15                     | 57/F       | Chicken/pigeon slaughtering | No                 | No          | 5        | 40   | 80   | 5    |  |  |
| 16                     | 52/F       | Duck/goose seller           | No                 | No          | 5        | 80   | 5    | 5    |  |  |
| 17                     | 32/M       | Pig slaughtering            | No                 | No          | 5        | 5    | 5    | 80   |  |  |
| 43                     | 36/F       | Chicken slaughtering        | No                 | No          | 160      | 5    | 5    | 5    |  |  |
| 44                     | 42/M       | Chicken seller              | No                 | No          | NA       | NA   | 80   | NA   |  |  |
| 45                     | 29/M       | Chicken seller              | No                 | No          | NA       | NA   | 80   | 80   |  |  |
| 46                     | 39/M       | Chicken seller              | No                 | No          | NA       | NA   | 80   | NA   |  |  |
| 47                     | 46/F       | Chicken/duck seller         | No                 | No          | NA       | NA   | NA   | 160  |  |  |
| 18                     | 52/M       | Pig slaughtering            | No                 | No          | 5        | 80   | NA   | 80   |  |  |
| 19                     | 26/M       | Pork seller                 | No                 | No          | 5        | 5    | 5    | 160  |  |  |
| 20                     | 40/M       | Grocer (Control)            | Hypertension       | No          | 5        | 160  | 5    | 5    |  |  |
| 21                     | 48/M       | Grocer (Control)            | No                 | No          | 5        | 5    | 80   | 5    |  |  |
| 22                     | 38/M       | Grocer (Control)            | Diabetes           | Yes         | 5        | 5    | 160  | 5    |  |  |
| 23                     | 61/M       | Retired (Control)           | No                 | No          | NA       | 5    | 5    | 80   |  |  |
| 48                     | 48/M       | Grocer (Control)            | No                 | No          | NA       | NA   | 80   | 5    |  |  |
| 49                     | 49/M       | Officer (Control)           | No                 | Yes         | NA       | NA   | 160  | 5    |  |  |
| 50                     | 39/M       | Grocer (Control)            | No                 | No          | 160      | NA   | 20   | NA   |  |  |
| 51                     | 52/F       | Officer (Control)           | No                 | No          | NA       | NA   | NA   | 80   |  |  |
| 52                     | 61/M       | Retired (Control)           | No                 | No          | 80       | 40   | NA   | NA   |  |  |
| H5N1                   | a a / =    |                             |                    |             | _        | _    |      |      |  |  |
| 24                     | 39/F       | Chicken/duck/goose seller   | NO                 | NO          | 5        | 5    | 20   | 80   |  |  |
| 25                     | 45/F       | Chicken/duck/pigeon raising | No                 | No          | 20       | 10   | 40   | 80   |  |  |
| 26                     | 48/M       | Pigeon seller               | No                 | No          | 10       | 10   | 10   | 80   |  |  |
| 27                     | 60/F       | Chicken/goose seller        | No                 | No          | 10       | 5    | 40   | 80   |  |  |
| 28                     | 55/F       | Duck/goose seller           | No                 | No          | 5        | 5    | 40   | 160  |  |  |
| 29                     | 46/F       | Chicken slaughtering        | No                 | No          | 40       | 20   | 20   | 80   |  |  |
| 30                     | 53/F       | Chicken slaughtering        | No                 | No          | 20       | 5    | 20   | 80   |  |  |
| 53                     | 28/F       | Chicken/goose seller        | No                 | No          | 80       | 5    | NA   | NA   |  |  |
| 54                     | 55/F       | Chicken processing          | NO                 | NO          | 5        | 5    | 5    | 80   |  |  |
| 55                     | 46/M       | Chicken raising             | No                 | No          | NA       | NA   | NA   | 80   |  |  |
| 56                     | 67/M       | Chicken seller              | No                 | No          | NA       | 40   | 40   | 80   |  |  |
| 57                     | 47/F       | Chicken/duck raising        | No                 | No          | NA       | NA   | NA   | 160  |  |  |
| 58                     | 66/F       | Chicken/duck seller         | No                 | No          | NA       | NA   | NA   | 80   |  |  |
| 59                     | 58/F       | Chicken/duck/pigeon seller  | Chronic bronchitis | No          | NA       | NA   | 40   | 80   |  |  |
| 60                     | 46/F       | Chicken/duck/pigeon seller  | No                 | No          | NA       | NA   | NA   | 80   |  |  |
| 61                     | 51/M       | Chicken/goose raising       | No                 | No          | 40       | NA   | NA   | 80   |  |  |
| 62                     | 57/F       | Pigeon raising              | No                 | No          | NA       | NA   | 40   | 80   |  |  |
| 63                     | 57/F       | Pigeon raising              | No                 | No          | 5        | 40   | 5    | 80   |  |  |

**Technical Appendix Table 2.** Characteristic of participants with seropositive for influenza A(H7N9), A(H9N2), A(H5N1), and A(H5N6) viruses, eastern China, 2013–2016\*

\*F, female; M, male; ILI, influenza-like Illness; MN, microneutralization; NA, the participant was not available in this year.

Technical Appendix Table 3. Characterization of selected molecular markers associated with infectivity, pathogenicity and antiviral susceptibility of viruses identified in the present study, eastern China, 2013–2016

|                                            | HA    |       |          |        |       |          |       | NA       | M2    |       | 32    |
|--------------------------------------------|-------|-------|----------|--------|-------|----------|-------|----------|-------|-------|-------|
| Virus name                                 | D158N | T160A | E190D    | Q226L  | G228S | Cleavage | R292K | Deletion | S31N  | E627K | D701N |
| A/chicken/Wuxi/5852/2015(H7N9) *           | N     | А     | E        | L      | G     | EIPKGR/G | R     | 69–73    | N     | E     | D     |
| A/chicken/Wuxi/7144/2015(H7N9) *           | N     | А     | E        | L      | G     | EIPKGR/G | R     | 69–73    | N     | E     | D     |
| A/chicken/Wuxi/8048/2016(H7N9) *           | Ν     | А     | E        | L      | G     | EIPKGR/G | R     | 69–73    | N     | E     | D     |
| A/chicken/Wuxi/WX5/2014(H7N9) *            | Ν     | А     | E        | L      | G     | EIPKGR/G | R     | 69–73    | Ν     | E     | D     |
| A/environment/Wuxi/Hu*n/2014(H7N9) *       | Ν     | А     | Е        | Q      | G     | EIPKGR/G | R     | 69–73    | Ν     | E     | D     |
| A/environment/Wuxi/WA021/2013(H9N2) *      | N     | Ν     | т        | L      | G     | PSRSSR/G | к     | 63-65    | Ν     | Е     | D     |
| A/environment/Wuxi/1062/2013(H9N2) *       | N     | D     | т        | L      | G     | PSPFSR/G | к     | 63-65    | Ν     | Е     | D     |
| A/environment/Wuxi/2505/2014(H9N2) *       | Ν     | D     | т        | L      | G     | PSRSSR/G | к     | 63-65    | Ν     | Е     | D     |
| A/duck/Wuxi/5083/2015(H9N2) *              | N     | D     | Ť        | Ĺ      | Ğ     | PSRSSR/G | ĸ     | 63–65    | N     | Ē     | D     |
| A/environment/Wuxi/5220/2015(H9N2) *       | N     | D     | T        | ī      | Ğ     | PSRSSR/G | ĸ     | 63-65    | N     | F     | D     |
| A/goose/Wuxi/5842/2015(H9N2) *             | N     | D     | Ť        | ī      | Ğ     | PSRSSR/G | ĸ     | 63-65    | N     | Ē     | D     |
| A/chicken/Wuxi/6082/2015(H9N2) *           | N     | D     | Ť        | Ē      | G     | PSRSSR/G | ĸ     | 63-65    | N     | F     | D     |
| $\Delta/chicken/Wuxi/6085/2015(H9N2) *$    | N     | D     | Ť        | L<br>I | G     | PSRSSR/G | ĸ     | 63-65    | N     | E     | D     |
| $\Delta/chicken/Wuxi/6088/2015(H9N2) *$    | N     | D     | ÷        | L      | G     | PSRSSR/G | ĸ     | 63-65    | N     | E     | D     |
| A/chicken/Wuxi/6000/2015(H0N/2) *          | N     | D     | ÷        | L      | G     | PSPSSP/C | ĸ     | 63_65    | N     | E     |       |
| $\Delta/chicken/Wuxi/6/11/2015(H0NI2) *$   | N     |       | ÷        | L      | G     | PSPSSP/C | ĸ     | 63_65    | N     | E     |       |
| $\Lambda$ /chickon/Wuxi/6440/2015(H0NI2) * | N     | D     | Ť        |        | G     |          | ĸ     | 63 65    | N     |       | D     |
| $\Lambda/chicken/Wuxi/6440/2015(19N2)$     | N     |       | ÷        | L      | G     |          | ĸ     | 63 65    | N     |       |       |
| A/CHICKEH/WUXI/0442/2015(H9N2)             | IN N  | D     | +        | L      | G     | FOROOR/G | ĸ     | 63-65    | IN NI |       | D     |
| A/Chicken/Wuxi/6650/2015(H9N2)             | IN N  | D     | +        | L      | G     | POROOR/G | ĸ     | 03-05    | IN NI |       | D     |
| A/Chicken/Wuxi/0050/2015(H9N2)             | IN N  | D     | +<br>+   | L      | G     | POROOR/G | ĸ     | 03-05    | IN NI |       | D     |
| A/cnicken/wuxi/6657/2015(H9N2)             | N N   | D     | 1<br>    | L      | G     | PSRSSR/G | ĸ     | 63-65    | IN N  | E     | D     |
| A/duck/vvuxi/6659/2015(H9N2) *             | N     | D     | 1<br>    | L      | G     | PSRSSR/G | ĸ     | 63-65    | N     | E     | D     |
| A/duck/vvuxi/6663/2015(H9N2) *             | N     | D     | 1<br>    | L      | G     | PSRSSR/G | ĸ     | 63-65    | N     | E     | D     |
| A/cnicken/wuxi/6688/2015(H9N2) *           | N     | D     | 1<br>    | L      | G     | PSPFSR/G | ĸ     | 63-65    | N     | E     | D     |
| A/chicken/Wuxi/7022/2015(H9N2)             | N     | D     | <u> </u> | L      | G     | PSRSSR/G | ĸ     | 63-65    | N     | E     | D     |
| A/chicken/Wuxi//109/2015(H9N2) *           | N     | D     | <u> </u> | L      | G     | PSRSSR/G | K     | 63-65    | N     | E     | D     |
| A/chicken/Wuxi/6808/2015(H9N2) *           | N     | D     | <u> </u> | L      | G     | PSRSSR/G | K     | 63–65    | N     | E     | D     |
| A/chicken/Wuxi7723/2016(H9N2) *            | N     | A     | T        | L      | G     | PSRSSR/G | K     | 63–65    | N     | E     | D     |
| A/chicken/Wuxi/8500/2016(H9N2) *           | N     | E     | Т        | L      | G     | PSRSSR/G | K     | 63–65    | N     | E     | D     |
| A/chicken/Wuxi/2723/2014(H9N2)             | N     | D     | Т        | L      | G     | PSRSSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/3083/2014(H9N2)             | N     | D     | Т        | L      | G     | PSPFSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/3085/2014(H9N2)             | N     | D     | Т        | L      | G     | PSPFSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/5854/2015(H9N2)             | N     | D     | Т        | L      | G     | PSRSSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/pigeon/Wuxi/5997/2015(H9N2)              | N     | D     | Т        | L      | G     | PSRSSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/pigeon/Wuxi/5998/2015(H9N2)              | N     | D     | Т        | L      | G     | PSPFSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/5999/2015(H9N2)             | Ν     | D     | Т        | L      | G     | PSPFSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/6080/2015(H9N2)             | Ν     | D     | Т        | L      | G     | PSRSSR/G | K     | 63–65    | Ν     | NSD   | NSD   |
| A/chicken/Wuxi/6084/2015(H9N2)             | Ν     | D     | Т        | L      | G     | PSRSSR/G | K     | 63–65    | Ν     | NSD   | NSD   |
| A/chicken/Wuxi/6225/2015(H9N2)             | Ν     | D     | т        | L      | G     | PSRSSR/G | К     | 63–65    | Ν     | NSD   | NSD   |
| A/chicken/Wuxi/6424/2015(H9N2)             | Ν     | D     | Т        | L      | G     | PSRSSR/G | к     | 63–65    | Ν     | NSD   | NSD   |
| A/chicken/Wuxi/6435/2015(H9N2)             | Ν     | D     | Т        | L      | G     | PSRSSR/G | к     | 63–65    | Ν     | Ē     | D     |
| A/chicken/Wuxi/6441/2015(H9N2)             | N     | D     | T        | Ĺ      | Ğ     | PSRSSR/G | K     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/6469/2015(H9N2)             | N     | D     | Т        | Ĺ      | Ğ     | PSRSSR/G | ĸ     | 63–65    | N     | NSD   | NSD   |
| A/chicken/Wuxi/6638/2015(H9N2)             | N     | D     | Т        | Ē      | Ğ     | PSRSSR/G | ĸ     | 63–65    | N     | NSD   | NSD   |
|                                            |       |       |          |        | -     |          |       |          |       | -     | -     |

|                                      | НА    |       |       |       |       |          |       | NA       | M2   | Р     | PB2   |  |
|--------------------------------------|-------|-------|-------|-------|-------|----------|-------|----------|------|-------|-------|--|
| Virus name                           | D158N | T160A | E190D | Q226L | G228S | Cleavage | R292K | Deletion | S31N | E627K | D701N |  |
| A/chicken/Wuxi/6643/2015(H9N2)       | N     | D     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/duck/Wuxi/6644/2015(H9N2)          | N     | D     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/6649/2015(H9N2)       | N     | D     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/7107/2015(H9N2)       | N     | D     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | E     | D     |  |
| A/chicken/Wuxi/7124/2015(H9N2)       | N     | D     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/7130/2015(H9N2)       | N     | D     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/7346/2015(H9N2)       | D     | D     | Т     | L     | G     | PSPSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/7641/2016(H9N2)       | N     | E     | Т     | L     | G     | PSRSSR/G | K     | 63–65    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/7157/2015(H5N6) *     | N     | А     | E     | Q     | G     | ERRRKR/G | R     | 58–68    | S    | E     | D     |  |
| A/duck/Wuxi/7249/2015(H5N6) *        | N     | А     | E     | Q     | G     | ERRRKR/G | R     | 58–68    | S    | E     | D     |  |
| A/chicken/Wuxi/7765/2016(H5N6) *     | N     | А     | E     | Q     | G     | ERRRKR/G | R     | 58–68    | S    | E     | D     |  |
| A/environment/Wuxi/1275/2014(H5N1)   | D     | А     | E     | Q     | G     | ERRRKR/G | R     | 49–68    | S    | NSD   | NSD   |  |
| A/environment/Wuxi/4689/2015(H5N1)   | N     | Т     | E     | Q     | G     | ERRRKR/G | R     | 49–68    | Ν    | NSD   | NSD   |  |
| A/environment/Wuxi/5068/2015(H5N1)   | N     | Т     | E     | Q     | G     | ERRRKR/G | R     | 49–68    | S    | NSD   | NSD   |  |
| A/environment/Wuxi/5081/2015(H5N1)   | D     | А     | E     | Q     | G     | ERRRKR/G | R     | 49–68    | Ν    | NSD   | NSD   |  |
| A/chicken/Wuxi/6074/2015(H5N2)       | N     | А     | E     | Q     | G     | ERRRKR/G | R     | No       | Ν    | NSD   | NSD   |  |
| A/duck/Wuxi/6462/2015(H5N2)          | N     | A     | E     | Q     | G     | ERRRKR/G | R     | No       | N    | NSD   | NSD   |  |
| A/duck/Wuxi/6466/2015(H5N2)          | N     | A     | E     | Q     | G     | ERRRKR/G | R     | No       | N    | NSD   | NSD   |  |
| A/chicken/Wuxi/2722/2014(H5N2)       | N     | Т     | E     | Q     | G     | ERRRKR/G | R     | No       | N    | NSD   | NSD   |  |
| A/environment/Wuxi/1772/2014(H5N2)   | N     | Т     | E     | Q     | G     | ERRRKR/G | R     | No       | N    | NSD   | NSD   |  |
| A/chicken/Wuxi/JYJN132/2014(H11N2) * | S     | Т     | E     | Q     | G     | PAIASR/G | R     | No       | S    | E     | D     |  |
| A/duck/Wuxi/JYJN126/2014(H11N2) *    | S     | Т     | E     | Q     | G     | PAIASR/G | R     | No       | S    | E     | D     |  |
| A/duck/Wuxi/JYJN203/2014(H11N2) *    | S     | Т     | E     | Q     | G     | PAIASR/G | R     | No       | S    | E     | D     |  |
| A/chicken/Wuxi/4859/2015(H3N8) *     | G     | А     | E     | Q     | G     | PEKQTR/G | R     | No       | S    | E     | D     |  |
| A/duck/Wuxi/7275/2016(H3N8) *        | G     | А     | E     | Q     | G     | PEKQTR/G | R     | No       | S    | E     | D     |  |
| A/goose/Wuxi/7276/2015(H3N8) *       | G     | А     | Е     | Q     | G     | PEKQTR/G | R     | No       | S    | E     | D     |  |
| A/chicken/Wuxi/5682/2015(H1N1)       | G     | S     | E     | Q     | G     | PSIQSR/G | R     | 63–65    | N    | E     | NSD   |  |

\*Viral isolation was successful. HA, hemagglutinin; NA, neuraminidase; M, matrix; PB2, polymerase basic 2; NSD, no sequence data.



Page 10 of 17





Page 12 of 17













Page 15 of 17





**Technical Appendix Figure.** Maximum-likelihood phylogenetic tree of influenza A viruses identified in the present study, Wuxi City, Jiangsu Province, eastern China, 2013–2016. The phylogenetic trees of the H7N9 (A), H9N2 (B), H5N6 (C), H5N1 (D), H5N2 (E), H11N2 (F), H3N8 (G), and H1N1 (H) subtypes are shown in panels A–H successively. Bootstrap values (n = 1,000) at key nodes are indicated. Values <75 were not shown. Scale bar indicates evolutionary distance (nucleotide substitutions per site). Black dots indicate the viruses reported in this study. Black triangles indicate the viruses had been previously reported. HA, hemagglutinin; NA, neuraminidase; NS, nonstructural; M, matrix; NP, nucleoprotein; PA, polymerase acidic; PB1, polymerase basic 1; PB2, polymerase basic 2.