Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 3, Number 3—September 1997
Perspective

Host Genes and HIV: The Role of the Chemokine Receptor Gene CCR5 and Its Allele (∆32 CCR5)

Janet M. McNichollComments to Author , Dawn K. Smith, Shoukat H. Qari, and Thomas Hodge
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article

Table 1

Human chemokine receptors.

Ligands
(MCP-1Ra)
Receptors
(Old names)a C-C chemokines CXC chemokines Predominant expression/Tissue distribution Pathogensb Chromosome
location GenBank Acc. #
CC Receptors
CCR1 (CC CKR1) αβ, RANTES, MCP-3 monocytes, T cells 3p21 L10918
CCR2A MCP-1 T cells, basophils, monocytes 3p21 U03882
CCR2B (MCP-1Rb) MCP-1, 3, 4 HIV-1 (NSI) U03905
CCR3
(CKR3) Eotaxin, RANTES, MCP-2,3,4 eosinophil, basophils, microglial cells, and possibly monocytes; little expression in peripheral blood T-lymphocytes or dendritic cells HIV-1 (NSI) 3p21 U28694
CCR4 TARC basophils, T cells 3p24 X85740
CCR5c
(CC CKR5) RANTES, MIP-1αβ monocytes, dendritic cells, microglial cells, T cells HIV-1 (NSI), HIV-2 3p21 U57840
CXC Receptors
CXCR1
(IL-8 RA) IL-8 neutrophils, NK cells 2q35 M68932
CXCR2
(IL-8 RB) IL-8, MGSA, gro-α , NAP-2, IP-10, ENA-78, Mig M73969
CXCR3 IP-10, Mig activated T cells X95876
CXCR4
(Fusin, LESTR, HUMSTR) SDF-1 wide: CD4+ and CD4- cells, monocytes, macrophages, dendritic cells, B cells; other tissues, e.g., brain, lung, spleen HIV-1 (SI)
HIV-2 2q21 M99293
CC/CXC Receptor
DARC
(Duffy antigen) RANTES, MCP-1, TARC etc. IL-8, MGSA, groetc. endothelial cells, erythrocytes Plasmodium vivax 1 U01839
Othersd
STRL33 ND ND lymphoid tissues and activated T cells HIV-1 3 U73529
HCMV-US28 MIP-1αβ, RANTES fibroblasts infected with CMV HIV-1 N/A X17403
ChemR1 ND ND T lymphocytes, polymorphonuclear cells 3p21-24 Y08456
CMKBRL1 ND ND neutrophils, monocytes, brain, liver, lung, skeletal muscles 3p21 U28934
TER1 ND ND thymus, spleen 3p21 U62556
V28 ND ND Neural and lymphoid tissue 3p21 U20350
D2S201E ND ND wide, including cells of hemopoietic origin 2q21 M99293
BLR1 ND ND B lymphocytes X68149
EBI1 ND ND B lymphocytes L08176
GPR1,2,5 ND ND ND L36149

a New nomenclature for CC and CXC chemokine receptors was adopted at the Gordon Research Conference on Chemotactic Cytokines, June 23-28, 1996.
bPathogens using this receptor for infection.
cThe 32bp deleted allele of CCR5 has been referred to as CCR5-2 (19).
dChemokine receptor-like genes whose predicted proteins have 7 transmembrane domains.
Abbreviations: BLR1, Burkitt's lymphoma receptor-1; CMKBRL1, Chemokine β receptor like-1; DARC, duffy antigen/receptor for chemokines; EBI1, Epstein-Barr virus-induced receptor; ENA78, epithelial-derived neutrophil-activating peptide-78; GPR, G protein coupled receptor; gro, growth related gene product; HCMV, human cytomegalovirus; HUMSTR, human serum transmembrane segment receptor; IL, interleukin; IP-10, interferon-gamma inducible 10kD protein; LESTR, leukocyte-expressed seven-transmembrane-domain receptor; MCP, monocyte chemotactic protein; Mig, monokine induced by interferon gamma; MIP, macrophage inflammatory protein; NSI, non-syncytium inducing; N/A, not applicable; NAP-2, neutrophil-activating protein-2; ND, not determined; RANTES, regulated on activation, normal T cell expressed and secreted; SDF-1, stromal cell-derived factor-1; STRL33, seven transmembrane-domain receptor from lymphocyte clone 33; TARC, thymus and activation regulated chemokine.

Main Article

References
  1. World Health Organization. Acquired immunodeficiency syndrome (AIDS)November 20, 1996. Wkly Epidemiol Rec. 1996;48:361.
  2. Steel  CM, Ludlam  CA, Beatson  D, Peutherer  JF, Cuthbert  RJG, Simmonds  P, HLA haplotype A1 B8 DR3 as a risk factor for HIV-related disease. Lancet. 1988;1:11858. DOIPubMedGoogle Scholar
  3. Kaslow  RA, Carrington  M, Apple  R, Park  L, Munoz  A, Saah  AJ, Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med. 1996;2:40511. DOIPubMedGoogle Scholar
  4. McNeil  AJ, Yap  PL, Gore  SM, Brettle  RP, McCol  M, Wyld  R, Association of HLA types A1-B8-DR3 and B27 with rapid and slow progression of HIV disease. QJM. 1996;89:17785.PubMedGoogle Scholar
  5. Hill  AVS. HIV and HLA: confusion or complexity? Nat Med. 1996;2:395400. DOIPubMedGoogle Scholar
  6. Malkovsky  M. HLA and natural history of HIV infection. Lancet. 1996;348:1423. DOIPubMedGoogle Scholar
  7. Rowland-Jones  S, Sutton  J, Ariyoshi  K, Dong  T, Gotch  F, McAdam  S, HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat Med. 1995;1:5964. DOIPubMedGoogle Scholar
  8. Paxton  WA, Martin  SR, Tse  D, O'Brient  TR, Skurnick  J, VanDevanter  NL, Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposures. Nat Med. 1996;2:4127. DOIPubMedGoogle Scholar
  9. Liu  R, Paxton  WA, Choe  S, Ceradini  D, Martin  SR, Horuk  R, . Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:36777. DOIPubMedGoogle Scholar
  10. Fowke  KR, Nagelkerke  NJD, Kimani  J, Simonsen  JN, Anzala  AO, Bwayo  JJ, Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya. Lancet. 1996;348:134751. DOIPubMedGoogle Scholar
  11. Stephens  H, Beyrer  C, Mastro  T, Nelson  KE, Klaythong  R, Kunachiwa  W, HLA class I alleles in a cohort of HIV-1 exposed, persistently seronegative (HEPS) sex workers (CSWs) in Northern Thailand. In: Proceedings of the 3rd Conference on Retroviruses and Opportunistic Infections; 1996 January. Washington (DC): American Society for Microbiology; 1996.
  12. Huang  Y, Paxton  WA, Wolinsky  SM, Neumann  AU, Zhang  L, He  T, The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996;2:12403. DOIPubMedGoogle Scholar
  13. Fowke  K, Slaney  LA, Simonsen  JN, Nagelkerke  N, Nath  A, Anzala  AO, HIV-1 resistant prostitutes: an innate mechanism. In: Proceedings of the 1st National Conference on Human Retroviruses; Dec 12-16. Washington (DC): American Society for Microbiology; 1993; p. 82.
  14. Plummer  FA, Fowke  K, Nagelkerke  NDJ, Simonsen  JN, Bwayo  J, Ngugi  E, Evidence of resistance to HIV among continuously exposed prostitutes in Nairobi, Kenya. In: Abstracts of the 9th International Conference on AIDS; Berlin 1993 June 6-11; WS-A07-3. Sponsored by the International AIDS Society and World Health Organization.
  15. Rowland-Jones  SL, McMichael  A. Immune responses in HIV-exposed seronegatives: have they repelled the virus? Curr Opin Immunol. 1995;7:44855. DOIPubMedGoogle Scholar
  16. Samson  M, Libert  F, Doranz  BJ, Rucker  J, Liesnard  C, Farber  CM, Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382:7225. DOIPubMedGoogle Scholar
  17. Dean  M, Carrington  M, Winkler  C, Huttley  GA, Smith  MW, Allikmets  R, Genetic restriction of HIV-1 infection and progression to AIDS by a deletion of the CKR5 structural gene. Science. 1996;273:185662. DOIPubMedGoogle Scholar
  18. Michael  NL, Chang  G, Louie  LG, Mascola  JR, Dondero  D, Birx  DL, The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997;3:33840. DOIPubMedGoogle Scholar
  19. Zimmerman  PA, Bucklerwhite  A, Alkhatib  G, Spalding  T, Kubofcik  J, Combadiere  C. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5--studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med. 1997;3:2336.PubMedGoogle Scholar
  20. Biti  R, Ffrench  R, Young  J, Bennetts  B, Stewart  G. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med. 1997;3:2523. DOIPubMedGoogle Scholar
  21. O'Brien  TR, Winkler  C, Dean  M, Nelson  JAE, Carrington  M, Michael  NL, HIV-1 infection in a man homozygous for CCR5 ∆32. Lancet. 1997;349:1219. DOIPubMedGoogle Scholar
  22. Theodorou  I, Meyer  L, Magierowska  M, Katlama  C, Rouzious  C; Seroco Study Group. HIV-1 infection in an individual homozygous for CCR5 ∆32. Lancet. 1997;349:121920. DOIPubMedGoogle Scholar
  23. Eugen-Olsen  J, Iversen  AKN, Garred  P, Koppelhus  U, Pedersen  C, Benfield  TL, Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS. 1997;11:30510. DOIPubMedGoogle Scholar
  24. Garred  P, Madsen  HO, Balslev  U, Hofmann  B, Gerstoft  J, Svejgaard  A. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet. 1997;349:23640. DOIPubMedGoogle Scholar
  25. Brinkman  BMN, Keet  IPM, Miedema  F, Verweij  CL, Klein  M. Polymorphisms within the human tumor necrosis factor-a promoter region in human immunodeficiency virus type 1-seropositive persons. J Infect Dis. 1997;375:18890.
  26. Khoo  SH, Pepper  L, Snowden  N, Hajeer  AH, Vallely  P, Wilkins  EG, Tumor necrosis factor c2 microsatellite allele is associated with the rate of HIV disease progression. AIDS. 1997;11:4238. DOIPubMedGoogle Scholar
  27. Murphy  PM. Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev. 1996;7:4764. DOIPubMedGoogle Scholar
  28. Napolitano  M, Zingoni  A, Bernardini  G, Spinetti  G, Nista  A, Storlazzi  C, Molecular cloning of TER1, a chemokine receptor-like gene expressed by lymphoid tissues. J Immunol. 1996;157:275963.PubMedGoogle Scholar
  29. Miller  LH. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc Natl Acad Sci U S A. 1997;91:24159. DOIGoogle Scholar
  30. Tournamille  C, Colin  Y, Cartron  JP, Le Van Kim  C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:2248. DOIPubMedGoogle Scholar
  31. Pleskoff  O, Treboute  C, Brelot  A, Heveker  N, Seman  M, Alizon  M. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science. 1997;276:18748. DOIPubMedGoogle Scholar
  32. Cocchi  F, DeVico  AL, Garzine-Demo  A, Arya  SK, Gallo  RC, Lusso  P. Identification of RANTES, MIP-1a and MIPß as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270:18115. DOIPubMedGoogle Scholar
  33. Deng  HK, Liu  R, Ellmeier  W, Choe  S, Unutmaz  D, Burkhart  M, Identification of a major coreceptor for primary isolates of HIV-1. Nature. 1996;381:6616. DOIPubMedGoogle Scholar
  34. Feng  Y, Broder  CC, Kennedy  PE, Berger  EA. HIV-1 entry cofactorfunctional CDNA cloning of seventransmembrane, G protein-coupled receptor. Science. 1996;272:8727. DOIPubMedGoogle Scholar
  35. Samson  M, Labbe  O, Mollereau  C, Vassart  G, Parmentier  M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry. 1996;35:33626. DOIPubMedGoogle Scholar
  36. Dragic  T, Litwin  V, Allaway  GP, Martin  SR, Huang  YX, Nagashima  KA, HIV-1 entry into CD4(+) cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381:66773. DOIPubMedGoogle Scholar
  37. Alkhatib  G, Combadiere  C, Broder  CC, Feng  Y, Kennedy  PE, Murphy  PM, CC CKRSA RANTES, MIP-1-α, MIP-1ß receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272:19558. DOIPubMedGoogle Scholar
  38. Choe  H, Farzan  M, Sun  Y, Sullivan  N, Rollins  B, Ponath  PD, The ß-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85:113548. DOIPubMedGoogle Scholar
  39. Doranz  BJ, Rucker  J, Yi  YJ, Smyth  RJ, Samson  M, Peiper  SC, A dual-tropic primary HIV-1 isolate that uses fusin and the ß-chemokine receptors CKR-5, CKR-3 and CKR-2b as fusion cofactors. Cell. 1996;85:114958. DOIPubMedGoogle Scholar
  40. He  J, Chen  Y, Farzan  M, Choe  H, Ohagen  A, Gartner  S, CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature. 1997;385:6459. DOIPubMedGoogle Scholar
  41. Bleul  CC, Wu  L, Hoxie  JA, Springer  TA, Mackay  CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A. 1997;94:192530. DOIPubMedGoogle Scholar
  42. Simmons  G, Wilkinson  D, Reeves  JD, Dittmar  MT, Beddows  S, Weber  J, Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either lestr or CCR5 as coreceptors for virus entry. J Virol. 1996;70:835560.PubMedGoogle Scholar
  43. Zhang  L, Huang  Y, He  T, Cao  Y, Ho  DD. HIV-1 subtype and second-receptor use. Nature. 1996;383:768. DOIPubMedGoogle Scholar
  44. Wain-Hobson  S. One on one meets two. Nature. 1996;384:1178. DOIPubMedGoogle Scholar
  45. Cocchi  F, DeVico  AL, Garzino-Demo  A, Cara  A, Gallo  RC, Lusso  P. The V3 domain of the HIV-1 gp 120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med. 1996;2:12447. DOIPubMedGoogle Scholar
  46. Wu  L, Gerard  NP, Wyatt  R, Choe  H, Parolin  C, Ruffing  N, CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996;384:17983. DOIPubMedGoogle Scholar
  47. Trkola  A, Dragic  T, Arthos  J, Binley  JM, Olson  WC, Allaway  GP, CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR5. Nature. 1996;384:1847. DOIPubMedGoogle Scholar
  48. Rucker  J, Samson  M, Doranz  BJ, Libert  F, Berson  JF, Yi  Y, Regions in ß-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell. 1996;87:43746. DOIPubMedGoogle Scholar
  49. Atchison  RE, Gosling  J, Monteclaro  FS, Franci  C, Digilio  L, Charo  IF, Multiple extracellular elements of CCR5 and HIV-1: dissociation from response to chemokines. Science. 1996;274:19246. DOIPubMedGoogle Scholar
  50. Lapham  C, Ouyang  J, Chandrasekhar  B, Nguyen  N, Dimitrov  D, Golding  H. Evidence for cell-surface association between fusin and the CD4-gp 120 complex in human cell lines. Science. 1996;274:6025. DOIPubMedGoogle Scholar
  51. Oravecz  T, Pall  M, Norcross  MA. ß-Chemokine inhibition of monocytotropic HIV-1 infection. Interference with a postbinding fusion step. J Immunol. 1996;157:132932.PubMedGoogle Scholar
  52. Paxton  WA, Dragic  T, Koup  RA, Moore  JP. Perspective--research highlights at the Aaron Diamond AIDS Research Center--the beta-chemokines, HIV type 1 second receptors, and exposed uninfected persons. AIDS Res Hum Retroviruses. 1996;12:12037. DOIPubMedGoogle Scholar
  53. Wu  L, Paxton  WA, Kassam  N, Ruffing  N, Rottman  JB, Sullivan  N, CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185:168191. DOIPubMedGoogle Scholar
  54. Kaslow  RA, Koup  R, Zimmerman  P, Dean  M, Naik  E, Enger  C, HLA scoring profile (HSP) and CCR5 deletion heterozygosity as predictors of AIDS in seroconverters. In: Proceedings of the 4th Conference on Retroviruses and Opportunistic Infections; Jan 22-26. Washington (DC): American Society of Microbiology: 1997; p. 69.
  55. Combadiere  C, Ahuja  SK, Murphy  PM. Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem. 1996;271:11034.PubMedGoogle Scholar
  56. Daugherty  BL, Siciliano  SJ, DeMartino  JA, Malkowitz  L, Sirotina  A, Springer  MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med. 1996;183:234954. DOIPubMedGoogle Scholar
  57. Ponath  PD, Qin  S, Post  TW, Wang  J, Wu  L, Gerard  NP, Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med. 1996;183:243748. DOIPubMedGoogle Scholar
  58. D'Souza  MP, Harden  VA. Chemokines and HIV-1 second receptors. Nat Med. 1996;2:1293300. DOIPubMedGoogle Scholar
  59. Kolata  G. New AIDS study reveal startling immunity data. The New York Times. 1996; September 27, 1996. p. A13.
  60. Kolata  G. Geneticists seek to understand why disease genes spread. The New York Times 1996; Sect. B:5-9.
  61. Easterbrook  PJ, Chmiel  JS, Hoover  DR, Saah  AJ, Kaslow  RA, Kingsley  LA, Racial and ethnic differences in human immunodeficiency virus type 1 (HIV-1) seroprevalence among homosexual and bisexual men.The multicenter AIDS cohort study. Am J Epidemiol. 1993;138:41529.PubMedGoogle Scholar
  62. Soto-Ramirez  LE, Renjifo  B, McLane  MF, Marlink  R, O'Hara  C, Sutthent  R, HIV-1 Langerhans' cell tropism associated with heterosexual transmission of HIV. Science. 1996;271:12913. DOIPubMedGoogle Scholar

Main Article

1Garred P, Eugen-Olsen J, Iversen AKN, Benfield TL, Svejgaard A, Hofmann, B, the Copenhagen AIDS Study Group. Dual effect of CCR5 D32 gene deletion in HIV-1-infected patients. Lancet 1997; 349:1884.

2Martinson JJ, Chapman NH, Rees DC, Lui Y-T, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion [letter]. Nature Genetics 1997;16:100-103.

3Centers for Disease Control and Prevention. Facts about CCR5 and protection against HIV-1 infection; 1997.

Page created: December 21, 2010
Page updated: December 21, 2010
Page reviewed: December 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external