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Approximately 10,000–15,000 cases of human 
Crimean-Congo hemorrhagic fever (CCHF) oc-

cur annually worldwide (1–3). However, more defini-
tive case numbers are difficult to ascertain because 
up to 88% of infections are thought to be subclinical 
(1–3), unrecognized, or occurring in locations with 
limited disease surveillance or laboratory testing ca-
pability (4,5). CCHF virus (CCHFV) causes a spec-
trum of human clinical manifestations, ranging from 
asymptomatic infection to a severe hemorrhagic fe-
ver marked by shock and multiorgan failure (Figure). 
During CCHF outbreaks, the case-fatality rate ranges 
from 5% to 30% (1), and some published case series 
have reported fatality rates up to 62% (6). Disease 
caused by CCHFV infection is limited to humans, but 
asymptomatic transient viremia lasting up to 15 days 
has been documented in livestock and wild animals 
(7). Severe or fatal disease correlates with an exu-
berant proinflammatory immune response leading 
to vascular dysfunction, disseminated intravascular 
coagulation, multiorgan failure, and shock (8). Al-
though the detection of IgM (usually present as early 
as day 4–5 of illness) and IgG (usually detectable after 
days 7–9 of illness) correlates with declining viremia, 
fatal cases of CCHF often mount no or very late im-
mune responses (9). However, the antibody response 
to CCHFV does not correlate with disease outcome or 
protection from vaccines. That feature of CCHF, com-
bined with a paucity of available animal models (10), 
makes vaccine and treatment research challenging. 
The US Food and Drug Administration (FDA) has 
not approved any vaccines or treatments for CCHF. 
Ribavirin is commonly used for treatment but clini-

cal evidence regarding its benefit is mixed. Another 
antiviral medication, favipiravir, shows promise in 
animal models but has rarely been used in human 
CCHF management. Vaccine candidates are mostly 
in preclinical development, and few have advanced 
to human clinical trials to date.

This third article in a 3-part series summarizing 
the main aspects of CCHF is intended to provide cli-
nicians with an overview of diagnostic testing, man-
agement, and medical countermeasures for CCHF. 
The first article focuses on the virology, pathogenesis, 
and pathology of CCHF (11) and the second on epide-
miology, clinical features, and prevention and control 
of CCHF (12). 

Methods
For this paper, we  conducted a focused review of 
National Center for Biotechnology’s MeSH (Medical 
Subject Headings, https://www.ncbi.nlm.nih.gov/
mesh) and PubMed (https://pubmed.ncbi.nlm.nih.
gov) search strings customized for CCHF and CCH-
FV. We focused our review on the past 10 years and 
on human data, when available. We included older 
relevant data and animal data where appropriate. We 
conducted title, abstract, and full text reviews of rel-
evant manuscripts, reviews, and book chapters. We 
also completed bibliography scans on review articles 
and meta-analyses.

Diagnostic Testing
The nonspecific CCHF characteristics make a high in-
dex of suspicion, on the basis of epidemiologic histo-
ry, clinical signs and symptoms, and initial laboratory 
findings, key for early diagnosis and initiation of ag-
gressive treatment. Delays in diagnosis and hospital-
ization are common and have occurred in up to 68% 
of patients in Turkey and led to increased mortality 
rates when compared with patients whose infections 
are diagnosed early (13).

Although many laboratory assays have been de-
veloped for diagnosing CCHF, the availability and 
Biosafety Level (BSL) requirements for safe speci-
men handling vary widely between countries. Swe-
den, Switzerland, France, Germany, Italy, and the 
United Kingdom recommend BSL-4 for CCHFV di-
agnostic assays (14). Conversely, the United States, 
South Africa, Kazakhstan, Slovenia, and Georgia 
allow diagnostic tests to be performed in BSL-3 
laboratories, and Bulgaria, Turkey, and Serbia rec-
ommend BSL-2 laboratories (15). For most testing 
modalities, other than viral culture, viral inactiva-
tion of the sample can be performed to downgrade 
the BSL requirement (16,17).
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Crimean-Congo hemorrhagic fever virus (CCHFV) is the 
most geographically widespread tickborne viral infection 
worldwide and has a fatality rate of up to 62%. Despite 
its widespread range and high fatality rate, no vac-
cines or treatments are currently approved by regula-
tory agencies in the United States or Europe. Supportive 
treatment remains the standard of care, but the use of 
antiviral medications developed for other viral infections 
have been considered. We reviewed published literature 
to summarize the main aspects of CCHFV infection in 
humans. We provide an overview of diagnostic testing 
and management and medical countermeasures, in-
cluding investigational vaccines and limited therapeu-
tics. CCHFV continues to pose a public health threat 
because of its wide geographic distribution, potential to 
spread to new regions, propensity for genetic variability, 
potential for severe and fatal illness, and limited medical 
countermeasures for prophylaxis and treatment. Clini-
cians should become familiar with available diagnostic 
and management tools for CCHFV infections in humans.
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Diagnosis can be obtained either by viral detec-
tion or identification of an immune response against 
CCHFV (Table), and test selection is guided by clini-
cal phase. Although most viral detection tests, either 
viral culture, nucleic acid amplification tests, or viral 
antigen detection assays, will have greater sensitiv-
ity than immunoassays for diagnosis during the pre-
hemorrhagic or early hemorrhagic phases, serologic 
testing is reserved for a delayed diagnosis or beyond 
day 5 after symptom onset (17) (Table; Figure). If a 
negative antibody test is obtained during the second 
week of illness in a patient suspected to have CCHF, 
a direct viral assay might be warranted for diagnostic 
clarification (17). Undetectable IgM and IgG in CCHF 
patients with fatal outcomes have been described (9). 
Whether those patients succumbed to CCHF because 
of failure to mount an antibody response, a rapidly 
progressive clinical course with fatal outcome before 
day 7, or formation of immune complexes that made 
antibodies undetectable is unclear (9).

Direct viral detection tests are useful during vire-
mic stages of CCHF. Viral cultures using cell lines or 
intracerebral inoculation of suckling mice can detect a 
wide diversity of CCHFV strains; however, viral cul-
tures are time-consuming, and results can take sev-
eral days. Another challenge is the paucity of BSL-3 
and BSL-4 laboratories able to safely perform viral 
cultures in endemic areas (17). Nucleic acid amplifi-

cation tests, such as reverse transcription PCR (RT-
PCR), can be useful for diagnosis until up to days 
10−12 of illness. Assays can be run in inactivated 
samples in BSL-2 and BSL-3 facilities, but correct in-
activation methods need to be selected for compat-
ibility with the chosen diagnostic test (15,16). Some of 
those assays are designed as multiplex assays instead 
of CCHFV-specific and provide breadth to rule out 
other viral hemorrhagic fevers (17). Assays capable to 
detecting viral load also are available (17). However, 
accuracy of those tests varies and is affected by the 
match between the PCR primers used and the viral 
strain because of the wide genetic diversity of CCH-
FV (17). Accuracy can be improved by using real-time 
RT-PCR (rRT-PCR) or a combination of rRT-PCR and 
conventional RT-PCR or rRT-PCR and nested RT-
PCR (17). Combining assays can increase accuracy to 
80% from 66% of reference samples when using con-
ventional RT-PCR alone and from 46% when using 
nested RT-PCR alone (17). 

Viral antigen detection tests, such as ELISA for 
serum or immunohistochemistry for tissue from bi-
opsies or autopsy samples, also can be used early 
in the disease. Those assays require a lower level of 
laboratory sophistication, can be done on inactivated 
samples, and offer timely results; however, assay sen-
sitivity decreases as antibodies become detectable. 
IgM can be detectable as early as 4–5 days and usually 
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Figure. Overview of Crimean-Congo hemorrhagic fever virus symptom onset, clinical course, and diagnostic testing timeframes. ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; DIC disseminated intravascular coagulation; PLTs, platelets; PTSD, post-
traumatic stress disorder; WBCs, white blood cells.
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by 7–9 days after symptom onset, peaks within 2–3 
weeks, and declines to an almost undetectable level 
by month 4 from symptom onset (9,16,17). IgG typi-
cally becomes detectable 1–2 days after IgM (usually 
7–9 days after illness onset), peaking in some patients 
between weeks 2–3 and between 2–5 months in some 
other patients. IgG remains detectable for at least 3 
years (9,16,17). Neutralizing antibodies, although not 
routinely tested in the clinical setting, often can be de-
tected by day 10 with variable titers (9). 

CCHF diagnosis can be confirmed not only by 
the direct viral identification methods described, but 
also by evidence of a serologic response consistent 
with acute infection. CCHFV serologic testing is typi-

cally recommended 5–7 days after symptom onset; 
ELISA and immunofluorescence assays are the most 
common (16) (Figure). ELISA results are considered 
consistent with acute infection if either CCHFV IgM 
is detected or a 4-fold increase in CCHFV IgG titers 
occurs between serial blood samples. Some CCHFV 
antibody assays are known to cross-react with Nai-
robi sheep disease serogroup, which also causes hu-
man disease in some CCHF endemic areas, and with 
Hazara virus, a member of the CCHFV group with 
no documented human disease (18). Several ELISA 
kits are commercially available for research but not 
for clinical diagnostic testing, and their sensitivity 
and specificity are also susceptible to CCHFV genetic 
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Table. Advantages and disadvantages of various diagnostic tests for CCHFV* 
Test selection Sample type Timing Advantages Disadvantages 
Viral detection†     
 Viral culture‡ Culture Early after symptom 

onset 
Detects a wide diversity of 

CCHFV strains 
Requires BSL-3 or BSL-4 
laboratory, which are not 

readily available in endemic 
areas. Requires several 

days to yield a result. 
 NAAT, RT-PCR  Culture <10–12 days after 

symptom onset 
If samples are inactivated, 
then NAAT can be run in 
BSL-2 or BSL-3 facilities. 
Several multiplex assays 
available, and some can 

quantify viral load. 

Variable sensitivity 
depending on match 
between primers and 

infecting strain. Sensitivity 
and specificity can vary by 

geographic region.  
Better sensitivity (80%) 

when PCR combinations 
used, e.g., rRT-PCR and 
conventional PCR or rRT-

PCR and nested PCR (17). 
 Viral IgG detection     
  ELISA Serum <5–9 days after 

symptom onset 
Timely results. Viral 
inactivation can be 

performed. Requires less 
laboratory specialization. 

Decreased sensitivity after 
CCHFV antibodies are 

detectable. 

  Immunohistochemistry Tissue or liver 
samples 

<5–9 days after 
symptom onset 

Can assist in retrospective 
diagnosis for fatal cases. 

Requires biopsy or 
necropsy samples. 

Immune response, serology     
 IgM ELISA§ or IFA¶  Detectable 7–9 days 

after symptom 
onset; peak 2–3 

weeks; declines to 
low levels by month 

4 

ELISA sensitivity 87.8%, 
specificity 98.9. 

IFA sensitivity 93.9%, 
specificity 100% (17).  

Commercially available kits 
for research but not for 

clinical laboratories; variable 
geographic sensitivity; IgM 
might not be detectable in 

fatal cases 
 IgG ELISA§, IFA¶, or 
Luminex xMAP 

 Detectable 1–2 d 
after IgM, peaks 2 

wks–5 mo; 
detectable for <3 y 

ELISA sensitivity 80.4%, 
specificity 100%. 

IFA sensitivity 86.1% 
specificity 100% (17). 

Commercial ELISA and IFA 
kits available for research 

but not for clinical 
laboratories; variable 

geographic sensitivity; IgM 
might not be detectable in 

fatal cases 
 Neutralizing antibodies#  >10 days after 

illness onset 
Can be performed in BSL-

2 facilities 
Takes several days to 

perform. Not routinely used 
for diagnostic purposes. 

*BSL, Biosafety Level; CCHFV, Crimean-Congo hemorrhagic fever virus; RT-PCR, reverse transcription PCR; rRT-PCR, real-time RT-PCR; Ddx, 
differential diagnoses; IFA: immunofluorescence assays; Nabs, neutralizing antibodies. 
†Recommended when patient is viremic. Could be performed as cell culture or intracerebral inoculation of mice. 
‡RT-PCR could be real-time, conventional, nested or a combination 
§VectroCrimea-CHF (Vector-Best, https://en.vector-best.ru). 
¶Crimean Congo Fever Mosaic 2 (Euroimmun, https://www.euroimmun.com). 
#Pseudoplaque or plaque reduction neutralization tests for CCHFV viral-like particles. 
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variability (16). However, some of those assays have 
sensitivities >80% and specificities close to 100% (17). 
One commercially available immunofluorescence as-
say demonstrated a sensitivity of 93.9% for IgM and 
86% for IgG and 100% specificity for both (17) (Ta-
ble). No commercial rapid CCHF diagnostic tests are 
available for clinical use (16,17,19).

In the United States, testing of clinical speci-
mens for CCHFV at designated reference laborato-
ries should be arranged by consulting with respec-
tive local public health authorities and coordinating 
with the Centers for Disease Control and Prevention. 
CCHFV is a notifiable communicable disease in the 
United States and Europe and is considered a cat-
egory A priority pathogen by the National Institute 
of Allergy and Infectious Diseases (NIAID; https://
www.niaid.nih.gov/research/emerging-infectious-
diseases-pathogens). Thus, clinicians should coor-
dinate with public health authorities for collecting 
and shipping clinical samples and should follow re-
quirements by the US Department of Transportation 
Hazardous Materials Regulations, 49 CFR 171–180 
(https://www.ecfr.gov/current/title-49/subtitle-B/
chapter-I/subchapter-C), and the International Air 
Transport Association Dangerous Goods Regulations 
(https://www.iata.org/en/publications/dgr).

Medical Countermeasures
No FDA-approved medications or vaccines are avail-
able to prevent or treat CCHF, nor are any approved 
by the European Medicines Agency. In this section, we 
describe evidence for off-label use of existing medica-
tions and upcoming investigational countermeasures 
that are in development and have been assessed for 
prophylactic or therapeutic effects on CCHFV infec-
tion in humans or animal models. The first article in 
this series should serve as a reference on virologic fea-
tures when reviewing medical countermeasures and 
vaccine sections (11).

Preexposure Prophylaxis and CCHF Vaccines 
A single vaccine is available to prevent CCHF in hu-
mans, produced by BulBio-NCIPD Limited (https://
wwww.bulbio.com), but its licensure is limited to 
Bulgaria. This vaccine originally was developed in 
the former Soviet Union in 1970 and has been used 
in at-risk populations in Bulgaria, primarily military 
and medical personnel, since 1974 (20). The vaccine 
consists of chloroform and heat inactivated CCHFV 
strain V42/81 isolated from suckling mouse brain tis-
sue (20). The vaccine series is administered in 2 intra-
muscular doses 30 days apart, a 3rd dose at 1 year, 
and subsequent booster doses every 5 years (20). The 

vaccine has been shown to elicit CCHFV IgG but with 
low viral neutralization activity and T-cell responses 
to the CCHFV nucleoprotein (21). No vaccine effec-
tiveness data are available. A 4-fold decrease in CCH-
FV diagnoses in Bulgaria was demonstrated in the 21 
years after introduction of that vaccine; however, the 
degree to which the decrease is attributable to vac-
cination versus other measures remains unclear (20).

Aside from the inactivated vaccine available in 
Bulgaria, only 1 vaccine candidate, an inactivated 
vaccine derived from cell culture, has advanced to 
human clinical trials (https://www.ClinicalTrials.
gov, no. NCT03020771). Although a phase 1 trial has 
been completed, no results were available by early 
2023. Several other vaccine candidates are in preclini-
cal development. Those vaccines primarily target the 
CCHFV glycoprotein, nucleoprotein, or both, includ-
ing DNA-based (22–29), RNA-based (30,31), protein 
subunit–based (32–34), viral replicon particle–based 
platforms (35–38), and recombinant viral vector–
based platforms that use bovine herpesvirus type 4, 
human adenovirus 5, modified vaccinia Ankara, and 
vesicular stomatitis virus (39–44). Vaccine-induced 
protection might be elicited by vaccines containing 
either the CCHFV glycoprotein or nucleoprotein in 
preclinical studies, but not consistently across vac-
cine platforms expressing the same antigen (Ap-
pendix 1 Table, https://wwwnc.cdc.gov/EID/
article/30/5/23-1648-App1.pdf).

The World Health Organization has identified 
development of CCHF vaccines as a priority (45) 
but faces multiple challenges, including the high 
degree of genetic diversity between CCHFV strains, 
the need for high biocontainment laboratories to 
perform challenge studies, and the limited animal 
models in which CCHF disease can be replicated. 
Animal models amenable to vaccine studies were not 
available until lethal CCHF disease models in mice 
with deficits in type 1 interferon signaling pathways 
(STAT1−/− and IFNAR−/− mice) were identified in 
2010 (46,47). Recently developed models of CCHF 
disease in humanized mice, in cynomolgus macaques 
(Macaca fascicularis), and among immunocompetent 
mice using a mouse-adapted CCHFV variant provide 
additional options for future CCHF vaccine studies 
(48–50). The lack of immune correlates of protec-
tion against CCHFV additionally poses a challenge 
for vaccine development. Neither CCHFV antibody 
titers nor neutralizing antibody titers correlate with 
vaccine-induced protection against disease or sur-
vival in animal models (9,10,25,26,32,43). However, 
recent data from a novel repRNA vaccine expressing 
CCHFV nucleoprotein suggest that a single dose of 
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this vaccine could induce robust and protective im-
munity in mice (30). Some studies suggest that both 
humoral and cellular immune responses might be re-
quired for full protection against CCHF disease and 
death (30,42). 

Postexposure Prophylaxis
Ribavirin-(1-β-D-ribofuranosyl-1,2,4-triazole-3-
carboxamide) is a purine nucleoside analog that acts 
against a wide range of viruses (Appendix 2 [https://
wwwnc.cdc.gov/EID/article/30/5/23-1648-App2.
pdf] references 51,52). Ribavirin has multiple poten-
tial mechanisms of antiviral activity and in vitro anti-
viral activity against CCHFV (Appendix 2 references 
51,52). The effectiveness of oral ribavirin prophylaxis 
for preventing CCHF is unknown, but it has been 
used as postexposure prophylaxis among healthcare 
workers with known CCHFV exposures (Appendix 2 
references 53–56). The optimal dosing and duration 
of postexposure prophylaxis is unclear; postexposure 
ribavirin regimens reported to date for CCHFV in-
clude total doses ranging from 1,200 to 4,000 mg daily 
and doses administered from 2 to 4 times daily for 
5–14 days, with or without a loading dose (21) (Ap-
pendix 2 references 53–57). CCHFV seroconversion 
has been reported among healthcare workers who 
were administered postexposure ribavirin prophy-
laxis after sustaining breaches in personal protective 
equipment while managing CCHF patients (Ap-
pendix 2 references 54,58). Mild symptoms in those 
healthcare workers initially were attributed to side 
effects from ribavirin (Appendix 2 references 54,58). 
Ribavirin frequently causes side effects, including fa-
tigue, gastrointestinal symptoms, headache, hemolyt-
ic anemia, and laboratory abnormalities (Appendix 2 
references 54,55). Ribavirin is contraindicated during 
pregnancy and has an FDA category X rating because 
of potential embryotoxic and teratogenic effects (Ap-
pendix 2 reference 59).

Antiviral Drug Treatments

Ribavirin
In addition to postexposure prophylaxis, ribavirin has 
been used to treat CCHF. Ribavirin reduces CCHFV 
viral loads in murine models (Appendix 2 references 
60,61). However, similar viremia reductions have not 
been observed among infected humans treated with 
ribavirin compared with untreated control patients 
(Appendix 2 references 62,63).

Evidence from human studies of ribavirin for CCHF 
treatment mainly consists of case series, case-control  

studies that use historical controls, and retrospective 
analyses, but few randomized clinical trials have been 
conducted, and meta-analyses identified potential for 
bias in multiple studies (Appendix 2 references 64–
67). In addition to variable study design, comparison 
of ribavirin effectiveness across studies is challenging 
because study outcomes could be influenced by other 
heterogeneous factors, such as differences in the ad-
ministration route (oral vs. intravenous) and dosing 
of ribavirin, timing of ribavirin initiation, co-adminis-
tration of other potential disease-modifying medica-
tions, severity of patients analyzed, and variation in 
predominant CCHFV strains in different geographic 
regions. 

A prospective, randomized clinical trial of oral 
ribavirin for CCHF treatment conducted in Turkey 
compared ribavirin with supportive therapy alone 
(Appendix 2 reference 68). In that study, patients 
were administered 30 mg/kg ribavirin as a loading 
dose, then 15 mg/kg every 6 hours for 4 days, after 
which they received 7.5 mg/kg every 8 hours for 6 
days. The researchers observed no substantial differ-
ences in death, hospitalization duration, time to nor-
malization of transaminases, or percentage of patients 
requiring platelet transfusions (Appendix 2 reference 
68). Several meta-analyses reveal mixed results for 
effects of ribavirin on CCHF, ranging from no clear 
survival benefit to a 1.7-fold reduction in mortality 
rates among CCHF patients treated with ribavirin 
compared with those not receiving ribavirin (Appen-
dix 2 reference 64–67).

Favipiravir 
Favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarbox-
amide) is a pyrazine analog that inhibits RNA poly-
merase activity in a wide variety of viruses. In vitro 
studies suggest that premature chain termination 
induced by favipiravir exceeds that of ribavirin for 
CCHFV and demonstrate synergistic antiviral effects 
when ribavirin and favipiravir are combined (Appen-
dix 2 references 69,70). 

Favipiravir is not licensed for use in the United 
States but is licensed for treatment of novel influen-
za A in Japan. Early favipiravir treatment for CCH-
FV infection reduces viral loads and clinical signs 
in both murine and macaque CCHF models, but 
prolonged viral detection and occasional late-onset 
CCHF disease were observed in mice (Appendix 2 
references 60,71). In lethal CCHFV challenge mouse 
models, treatment with favipiravir enhanced disease 
survival, even when initiated as late as 6 days postin-
fection (Appendix 2 references 60,70). Only 1 case of 
human CCHF treatment with favipiravir has been 
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described: a patient hospitalized with CCHFV and 
SARS-CoV-2 co-infection was treated with 1,600 mg 
favipiravir twice daily on day 1, then 600 mg twice 
daily for 4 days; the patient subsequently recovered 
(Appendix 2 reference 72). Favipiravir induces tera-
togenicity in animal models and should be avoid-
ed in pregnant and lactating women, if possible.  
Additional adverse effects include the potential for 
gastrointestinal distress (e.g., nausea, vomiting, or 
diarrhea), increased bilirubin levels, transaminitis, 
QTc prolongation, and hyperuricemia (Appendix 2 
reference 73).

Other Treatments
Supportive therapy remains the mainstay of CCHF 
treatment. Such therapy includes fluid replacement, 
management of electrolyte disturbances, blood prod-
uct replacement for critically low levels and coagu-
lopathy (e.g., fresh frozen plasma, packed red blood 
cells, or platelets), treatment of secondary infections, 
and external support for organ dysfunction (e.g., he-
modialysis, mechanical ventilation) when necessary 
(Appendix 2 references 74–77). Aspirin and nonste-
roidal antiinflammatory drugs should be avoided be-
cause of the potential inhibition of platelet aggrega-
tion or agglutination.

Therapeutic plasma exchange and plasmaphere-
sis have been used to treat CCHF, but the clinical ben-
efits of those measures remain unclear because data 
are limited to individual case reports or small case 
series (Appendix 2 references 78–81). In patients with 
CCHF-related hemophagocytic lymphohistiocytosis, 
use of intravenous immunoglobulin or high dose 
steroids, in addition to blood product transfusions, 
has been reported (Appendix 2 references 82,83). In 
a study of 35 CCHF patients in Iran, high dose meth-
ylprednisolone (10 mg/kg for 3 days, followed by 
5 mg/kg for 2 days) administered with ribavirin to 
patients with platelet counts <50,000/mL resulted in 
higher platelet and leukocyte counts and decreased 
need for transfusions compared with ribavirin alone, 
but no difference in deaths was observed (Appendix 
2 reference 84). In 1 retrospective study, fewer deaths 
were observed among patients with severe CCHF 
who received both corticosteroids and ribavirin ther-
apy compared with those treated with ribavirin alone, 
but no statistically significant decrease in deaths was 
observed among patients with mild or moderate 
CCHF treated with this combination (Appendix 2 ref-
erence 85). In 1 meta-analysis, an additional decrease 
in deaths was observed for corticosteroids in addition 
to ribavirin compared with ribavirin alone (Appendix 
2 reference 65).

Hyperimmune immunotherapy for CCHF using 
pooled serum or plasma harvested from CCHF sur-
vivors or CCHF vaccine recipients has been reported, 
but its effectiveness is unknown because its use has 
only been reported in small case series (Appendix 2 
references 86–88). Hyperimmune serum for CCHF 
treatment is not approved by either the FDA or the 
European Medicines Agency. Monoclonal antibodies 
for CCHF are in preclinical development and show 
improved survival among mouse models, but the 
degree of protection conferred by some monoclonal 
antibodies varied depending on the infecting CCHFV 
strain (Appendix 2 references 89,90).

Conclusion
CCHFV poses a continued public health threat given 
its wide geographic distribution, potential to spread 
to new regions, propensity for genetic variability, and 
potential for severe and fatal illness. Although infec-
tion control measures can be effective in reducing the 
risk for CCHFV transmission within community and 
healthcare settings, those measures require correct 
and consistent application. An urgent need exists for 
new CCHF diagnostic tests, prophylaxes, and treat-
ments. The current lack of licensed effective thera-
peutic and prophylactic drugs, gaps in our under-
standing of CCHFV pathogenesis and immunology, 
and slow progression in development of CCHF medi-
cal countermeasures are in part related to the dearth 
of animal models and high level of biosafety precau-
tions needed to safely work with CCHFV.

In conclusion, to promptly diagnose CCHF, clini-
cians should have a high index of suspicion, collect a 
comprehensive travel and epidemiologic history, and 
perform a thorough clinical evaluation. Evidence to 
demonstrate human benefit from off-label use of riba-
virin and favipiravir is disparate. Because few medi-
cal countermeasures are available for prophylaxis 
and treatment, supportive care remains the treatment 
standard for CCHF disease management. New CCHF 
diagnostic tests, prophylaxis, and treatments are ur-
gently needed. Given its wide range and potential for 
severe outcomes, clinicians should become familiar 
with available diagnostic and management tools for 
CCHFV infections in humans. 
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