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Escherichia coli O157:H7, a highly virulent
organism first linked to infectious disease in
1982 (1) and now found worldwide, has caused
serious foodborne epidemics in the United
States, Japan, and Europe (2). One hypothesis
for the emergence and rapid spread of this
organism is that strong mutator alleles enhance
genetic variability and accelerate adaptive
evolution (3). LeClerc et al. (3) found that more
than 1% of O157:H7 strains had spontaneous
rates of mutation that were 1,000-fold higher
than those of typical E. coli. These mutator
strains were defective in methyl-directed mis-
match repair (MMR) as a result of deletions in
the intergenic region between the mutS and
rpoS genes (3). According to the mutator
hypothesis, a pathogen able to enter a transient
hypermutable state could overcome the fitness
costs of deleterious mutations by accruing new
genetic variation at times critical for survival
and colonization of new hosts.

Adaptive evolution by transient or prolonged
states of hypermutation can cause neutral
mutations to rapidly accumulate throughout the
genome. To detect possible elevation in the rate
of molecular evolution in the emergence of E. coli
O157:H7, we compared 12 genes with housekeep-
ing functions (Figure) that have been sequenced in
both E. coli O157:H7 and E. coli K-12 (a commensal
organism), as well as in an outgroup species,
Salmonella enterica serotype Typhimurium. The
evolutionary distance (expressed in point
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It has been proposed that an increased mutation rate (indicated by the frequency of
hypermutable isolates) has facilitated the emergence of Escherichia coli O157:H7.
Analysis of the divergence of 12 genes shows no evidence that the pathogen has
undergone an unusually high rate of mutation and molecular evolution.

Figure. Evolutionary distance in terms of synonymous
and nonsynonymous changes per 100 sites (4) for 12
genes sequenced from Escherichia coli O157:H7, E. coli
K-12, and Salmonella enterica Typhimurium. The
points for synonymous sites are (left to right): gap, crr,
mdh, icd, fliC (conserved 5' and 3' ends), trpB, putP,
aceK, mutS, trpC, tonB, and trpA. Under the mutator
hypothesis, the genetic distance between the pathogenic
O157:H7 strain (or the closely related strain ECOR37)
and the outgroup (Typhimurium) is expected to exceed
the distance between the commensal K-12 and the
outgroup.  Prolonged periods of enhanced mutation rate
should drive the points above the dotted line marking
equal rates of molecular evolution. Two loci (tonB and
trpA) show departure from the equal rate line, but
neither has evolved differently from that expected by
the molecular clock. The sequences of 12 genes were
obtained from GenBank or the original sources as
follows: aceK (5), crr (6-8), fliC (9), gap (10), icd (11),
mdh (12), mutS (13,14), putP (15), tonB (16,17), trp (17-
20).

mutations per 100 sites) between Typhimurium
and K-12 is shown against the distance between
Typhimurium and O157:H7 for synonymous and
nonsynonymous sites separately (Figure). The
line indicates equal rates of evolution in the two
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lineages. An elevated mutation rate in O157:H7
over evolutionary time should result in greater
divergence from Typhimurium than from K-12
and in the distribution of points above the equal-
rate line. For both synonymous and nonsynony-
mous sites, most genes fall below or very near the
equal-rate line with only two exceptions: tonB
and trpA deviate in the direction expected under
the mutator hypothesis. To test the significance
of these deviations, we compared the observed
degrees of divergence of K-12 and O157:H7 from
Typhimurium and the expectations of the
molecular evolutionary clock hypothesis (21).
The basis of this test is that a constant rate of
mutation results in equal numbers of substitu-
tions in two sequences from an outgroup (21).
Considering synonymous and nonsynonymous
changes together with Typhimurium as an
outgroup, we found that 11 of the 12 loci, including
tonB (m1 = 0, m2 = 3, X2 = 3.00, p > 0.05) and trpA
(m1 = 4, m2 = 10, X2 = 2.57, p > 0.05), did not deviate
significantly from a uniform rate of evolution
predicted by a molecular clock. Only mdh exhibited
a significant departure from the molecular clock
(m1 = 14, m2 = 5, X2 = 4.26, p < 0.05); however, the
direction was away from that predicted by the
mutator hypothesis (the Typhimurium�K-12
distance exceeded the Typhimurium-O157:H7
distance).

Our findings do not conflict with the
observation that MMR defects occur in relatively
high frequency in emerging pathogens; however,
the findings indicate no evidence of a
genomewide elevation of the mutation rate in
pathogenic E. coli O157:H7. The uniform rate
of divergence of O157:H7 and K-12 suggests
several possibilities. One is that the mutator
state is transient and so brief that the impact on
long-term rates of evolution is undetectable. This
possibility is consistent with the view that
mutators may generate favorable mutations in
periods of intense selection and then revert to a
nonmutator phenotype (22,23). Another possibil-
ity is that all bacterial populations experience
brief episodes of adaptive evolution driven by
hypermutation. Matic and co-workers (24) found
equivalent frequencies of mutators among
strains of commensal bacteria and both
emerging and classical pathogenic E. coli.

Finally, defects in MMR that produce the
mutator phenotype also relax the normal
barriers to recombinational exchange between
bacterial species (25). The enhanced recombina-

tion that accompanies the mutator phenotype
may explain why E. coli O55:H7, the immediate
ancestor of O157:H7 (26) that also carries the
same defective MMR allele (3), harbors such an
extraordinary variety of plasmid and chromo-
somal virulence factors (27). Together with our
finding of clock-like divergence of E. coli
O157:H7 housekeeping genes, these observa-
tions indicate that the main evolutionary benefit
of the mutator phenotype is the enhanced ability
to acquire useful foreign DNA (3), not an increased
rate of point mutation over the long term.
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