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American Robins as Reservoir Hosts for
Lyme Disease Spirochetes

To the Editor: The article by Richter et al. (1)
presents interesting results, not only on the
ability of American robins to transmit Lyme
disease spirochetes but also on the birds’
tolerance to reinfection after the original
infectivity has waned. Even more interestingly,
spirochetes that had been transmitted by these
avian hosts were then transmitted by labora-
tory mice. However, important research on
wildlife hosts of the various genetic strains of
Lyme spirochetes is not fully acknowledged.
Therefore, the new results are not put into the
context of existing information, missing the
opportunity for much interesting comparison
between the American N40 strain of Borrelia
burgdorferi sensu stricto, the subject of this
work, and European strains of this and other
Borrelia genotypes.

Chipmunks (United States [2]), two species
of squirrels (United Kingdom [3] and Switzer-
land [4]), and hedgehogs (5) are missing from
the list of wildlife hosts, and the competence of
sheep is denied despite evidence to the contrary
(6). Moreover, European blackbirds, which have
been shown to transmit spirochetes to xenodi-
agnostic larval ticks (7), are dismissed as
transmission hosts on the basis of earlier
negative transmission results from Matuschka
(8), which came from two birds and pre-dated
knowledge of the genetic diversity and apparent

host specificity of B. burgdorferi sensu lato.
Pheasants are also dismissed as not contribut-
ing to transmission because, according to the
authors, larval ticks do not feed on them.
Although significantly fewer larvae than
nymphs feed on wild pheasants, in the summer
similar numbers of larvae feed on pheasants
(median 7, range 0-64 on cock birds; median 0,
range 0-7 on hens) as on rodents (3,9,10).
Laboratory and field data (9,11) analyzed
within a general transmission framework (10)
suggest that pheasants can act as a natural
reservoir for spirochetes of some genotypes.

A growing body of evidence, both observa-
tional and experimental, suggests that certain
B. burgdorferi s.l. genotypes (e.g., B. afzelii) are
transmitted much more efficiently by mammals
and that other genotypes (e.g., western Euro-
pean B. garinii) are transmitted more effi-
ciently by birds (4,7,11-14). Given the apparent
lack of host specificity of B. burgdorferi s.s.
N40, the new results would add to recent
advances in explaining Lyme spirochete ecology
if they were put in the context of these consis-
tent independent findings. It is now understood
that Lyme spirochetes circulate through popu-
lations of mixed species of hosts, each species
making different contributions to the overall
persistence of the pathogen because of their
differential transmission competence and
infestations by each tick stage (11,15). Larval
and nymphal ticks quest at different heights
(16), and this behavior changes in response to
microclimate, resulting in differential attach-
ment rates to various vertebrate species (17). In
such a population of hosts, any one species can
contribute a basic reproduction number (R0) of
less than unity but still play an important role
in maintaining enzootic cycles (10,18).

Finally, some aspects of Richter et al.’s
experimental results need clarification. Was the
laboratory colony of ticks screened regularly for
infection? Given the very high transmission
rates recorded in this study (86% transmission
by robins and 97.5% by mice), reassurance that
all infections were derived from the experimen-
tal procedure would be helpful. In addition, the
tolerance of repeated tick feeding by robins is
not as high as claimed; 82% of 32 nymphs at the
third infestation is (not quite significantly)
lower than 96% of 48 and 98% of 40 at the first
two infestations (Yate’s corrected χ2 = 5.5, 2df,
0.1>p > 0.05). Recent evidence suggests that
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repeated infestations of ticks on mice, even
without obvious reduced feeding success, result
in reduced transmission of spirochetes between
mice and ticks (19).

Sarah Randolph
University of Oxford, Oxford, United Kingdom
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Response to Dr. Randolph and Drs. Gern
and Humair

To the Editor: We define reservoir competence
of a host for a vector-borne pathogen in terms of
three component questions: How susceptible is
the putative reservoir host when the pathogen
is delivered by the bite of an infected vector
tick? How effectively does the pathogen prolifer-
ate and develop in this host? And how infective
is the resulting infected host to vector ticks and
for how long (1,2)? Drs. Gern and Humair insert
the parenthesis (implied xenodiagnosis) into a
citation of our text, thereby, equating reservoir
competence with a simple xenodiagnostic test
that partially addresses only the third compo-
nent of this definition. At best, such a test
records degree of infectivity to vector ticks at
some arbitrary and often unknown point in
time, a consideration that persuades us to limit
our citations referring to reservoir competence.
Conclusions derived from xenodiagnosis per-
formed on field-derived animals differ from
those that are obtained by an experimental
study. With regard to acknowledging relevant
research, we did cite the study on pheasants (3)
in which these birds were infected in the
laboratory by tick-borne spirochetes and subse-
quently infected only about a quarter of vector
ticks. The cited study on blackbirds (4), on the
other hand, used ticks solely to diagnose


