Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Volume 7, Number 6—December 2001

Research

Modeling Potential Responses to Smallpox as a Bioterrorist Weapon

Martin I. Meltzer*Comments to Author , Inger Damon*, James W. LeDuc*, and J. Donald Millar†
Author affiliations: *Centers for Disease Control and Prevention, Atlanta, Georgia, USA;; †Don Millar & Associates, Inc., Atlanta, Georgia, USA

Main Article

Figure 6

Daily and total cases of smallpox after a combined quarantine (25% daily removal rate) and vaccination campaign for two vaccine-induced reductions in transmission and three postrelease start dates. The graphs show that, when combined with a daily quarantine rate of 25%, vaccination must achieve a >33% reduction in transmission to stop the outbreak. At a 25% daily removal rate of infectious persons by quarantine, a cohort of all those entering their first day of overt symptoms (i.e., rash) is

Figure 6. Daily and total cases of smallpox after a combined quarantine (25% daily removal rate) and vaccination campaign for two vaccine-induced reductions in transmission and three postrelease start dates. The graphs show that, when combined with a daily quarantine rate of 25%, vaccination must achieve a >33% reduction in transmission to stop the outbreak. At a 25% daily removal rate of infectious persons by quarantine, a cohort of all those entering their first day of overt symptoms (i.e., rash) is entirely removed within 17 days (18 to 20 days after incubation) after the first day of overt symptoms, with 90% removed within 9 days. Removal is assumed to start same day as vaccinations. The daily rate of removal by quarantine relates only to the removal of those who are infectious (i.e., are overtly symptomatic). The rate does not include any persons who may be quarantined along with overtly symptomatic patients, such as unvaccinated household contacts. Vaccinating contacts or potential contacts is assumed to result in 25% and 33% reductions in transmission, so that the transmission rate is reduced from 3 to 2.25 and 2 persons infected per infectious person, respectively. Data were generated by assuming 100 initially infected persons and an initial transmission rate of 3 persons infected per infectious person. For clarity, the graphs of daily cases do not include the assumed 100 initially infected persons. The graphs of total cases include those initially infected.

Main Article

1Others have suggested that the terms "preeruptive" or "initial" are more descriptively accurate of this stage (6). However, because "prodromal" is used in many standard textbooks (7,8,17), we will use this term.

2Prodromal rashes have been recorded, but they were considered to be uncommon occurrences, ". . . not more than 1 in 10." (17).

3The United States stopped routine vaccination of the civilian population in 1972 (5). In July 1998 in the United States, there were approximately 109.9 million persons <30 years of age, representing 41% of the total resident population (20). Most of these people have not been vaccinated against smallpox. In addition, the immunologic status of those who were vaccinated >30 years ago must be considered. Historical data indicate that vaccination 20 to 30 years ago may not protect against infection but will often protect against death (8,21). No reports, however, define the probability of such persons' transmitting the disease to susceptible persons. Faced with such uncertainty, we chose the simplest approach of assuming an unlimited supply of susceptible persons.

4At a 50% daily removal rate, a cohort of all those beginning the first day of overt symptoms is entirely removed in 7 days (8 to 10 days postincubation), with 90% removed in 4 days after they enter the overtly symptomatic period. At a 25% daily removal rate, a cohort is entirely removed 17 days after entering the overtly symptomatic period (18 to 20 days postincubation), with 90% removed in 9 days after entering the overtly symptomatic period. The calculated numbers of those quarantined relate only to those who are infectious (i.e., overtly symptomatic). The model does not take into account those who might also be quarantined along with the infectious persons, such as unvaccinated household contacts and other exposed persons.

5The number, severity, and cost of vaccine-induced side effects is the subject for a separate paper.

6Allowing 3 days for laboratory confirmation assumes that virus loads in clinical specimens may be insufficient to allow use of rapid assays and confirmation must await the results of a culture-based assay, which takes approximately 72 hours. Rapid laboratory confirmation, within 24 hours, is possible.

7Even by reducing transmission from 3 to 2 persons per infectious person and quarantining infectious persons at a rate of 25% per day, the number of new cases at day 365 is 3, not zero (i.e., transmission is not quite completely stopped) (Figure 6). For transmission to cease completely, vaccination must either achieve a 38% reduction in transmission to 1.85 cases per infectious person (assuming a daily quarantine rate of 25%), or quarantine must achieve a 29% daily reduction in the number of infectious persons (assuming vaccination reduces transmission by 33%).

8Although there are some historical data regarding how infected persons interacted and infected others, all such data were collected when circumstances differed from those of today's societies, particularly with regard to travel and spread of information. Although air and other modes of mass travel were common before smallpox was eradicated, the numbers of travelers and the total miles traveled have vastly increased in the past 30 years. Similarly, although mass media were well known and used in the 1960s and 1970s, more outlets are available to spread information than ever before. It is unknown how these and other changes could affect the spread of smallpox.

Top of Page

 

Past Issues

Select a Past Issue:

World Malaria Day - April 25, 2014 - Invest in the future, defeat malaria

20th Anniversary - National Infant Immunization Week - Immunization. Power to Protect.

Art in Science - Selections from Emerging Infectious Diseases
Now available for order



CDC 24/7 – Saving Lives, Protecting People, Saving Money. Learn More About How CDC Works For You…

USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO