Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 8, Number 12—December 2002

Research

Antimicrobial Resistance of Escherichia coli O26, O103, O111, O128, and O145 from Animals and Humans

Carl M. Schroeder*, Jianghong Meng*, Shaohua Zhao†, Chitrita DebRoy‡, Jocelyn Torcolini‡, Cuiwei Zhao*, Patrick F. McDermott†, David D. Wagner†, Robert D. Walker†, and David G. White†
Author affiliations: *University of Maryland, College Park, Maryland, USA; †U.S. Food and Drug Administration, Laurel, Maryland, USA; ‡The Pennsylvania State University, University Park, Pennsylvania, USA

Main Article

Figure 2

Comparison of antimicrobial resistance frequencies between Shiga toxin–producing Escherichia coli (STEC) and other E. coli. Of isolates from cattle, resistance frequencies were similar between STEC and other E. coli (A). In contrast, of isolates from humans, resistance frequencies were generally lower for STEC compared with other E. coli (B). Am, ampicillin; Cx, cefoxitin; C, chloramphenicol; Frx, ceftriaxone; Smx, sulfamethoxazole; Cf, cephalothin; Gm, gentamicin; NA, nalidixic acid; Cip, cipro

Figure 2. . Comparison of antimicrobial resistance frequencies between Shiga toxin–producing Escherichia coli (STEC) and other E. coli. Of isolates from cattle, resistance frequencies were similar between STEC and other E. coli (A). In contrast, of isolates from humans, resistance frequencies were generally lower for STEC compared with other E. coli (B). Am, ampicillin; Cx, cefoxitin; C, chloramphenicol; Frx, ceftriaxone; Smx, sulfamethoxazole; Cf, cephalothin; Gm, gentamicin; NA, nalidixic acid; Cip, ciprofloxacin; Fur, ceftiofur; Te, tetracycline; T/S, trimethoprim-sulfamethoxazole; A/C, amoxicillin-clavulanic acid; Str, streptomycin.

Main Article

TOP