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Sampling Bias in the Molecular 
Epidemiology of Tuberculosis

Megan Murray*

Among the goals of the molecular epidemiology of infectious disease are to quantify the extent of ongoing
transmission of infectious agents and to identify host- and strain-specific risk factors for disease spread. I
demonstrate the potential bias in estimates of recent transmission and the impact of risk factors for cluster-
ing by using computer simulations to reconstruct populations of tuberculosis patients and sample from
them. The bias consistently results in underestimating recent transmission and the impact of risk factors
for recent transmission.

olecular epidemiology makes use of the genetic diver-
sity within strains of infectious organisms to track the

transmission of these organisms in human populations. It is
used extensively to differentiate reactivation tuberculosis
(TB), which is due to a remote infection, from disease caused
by recently transmitted organisms. This approach is based on
the concept that epidemiologically related organisms share
similar or identical genetic fingerprints, while unrelated organ-
isms differ at some genetic loci. Isolates of Mycobacterium
tuberculosis that occur in clusters sharing similar fingerprints
are thought to be caused by recently transmitted infection;
those with unique fingerprints are thought to result from dis-
tantly acquired infection. Since the extent of recent transmis-
sion of an infectious disease often directly reflects the success
of control measures (1,2), accurately assessing this quantity is
of considerable public health importance. 

In addition to distinguishing primary TB from reactivation
disease, these molecular techniques have been used to identify
risk factors for recent transmission in population-based epide-
miologic studies (3). The goals of these investigations have
been both to quantify the extent of ongoing transmission of M.
tuberculosis and to identify host- and strain-specific risk fac-
tors for disease spread. Typically, these researchers have stud-
ied a specific population at risk for the disease by enrolling a
cohort of persons with incident clinical TB, assessing these
patients’ individual risk factors, and fingerprinting the TB iso-
lates obtained from them (4-11). TB cases are then categorized
as either clustered or unique; a cluster is usually defined as two
or more patients whose isolates share an identical or near-iden-
tical DNA fingerprint, while unique cases are those with
unmatched patterns (12). Clustered cases are assumed to share
fingerprints as a result of recent spread of the organism among
those in the cluster, while cases with unique patterns are
assumed to be TB resulting from reactivated latent infection.
These studies usually report the proportion of cases that are
clustered within the cohort and use this result to infer the rela-
tive proportions of clustered and unclustered cases in the com-
munity from which the cohort was drawn. 

Two different methods have been used to estimate the pro-
portion of clustered cases. The first method, usually referred to

as the “n” method, uses the number of all cases that fall into
clusters as the estimator of clustered cases. The “n minus one”
method assumes that one case per cluster is a case of reactiva-
tion TB and thus removes one case per cluster from the counts
of “clustered” cases. The “n minus one” approach gives a
number of clustered cases that is always less than that calcu-
lated by the “n” approach. Covariates associated with clustered
fingerprints are taken to be host-specific risk factors for recent
transmission of M. tuberculosis. The identification of these
risk factors may provide specific targets for interventions
designed to interrupt disease transmission. 

These population-based molecular studies are often based
on random or convenience samples drawn from available clin-
ical isolates of M. tuberculosis. Implicit in the “population-
based” approach to molecular epidemiology is the assumption
that the results of studies based on these samples are reliable
estimates of the parameters of interest in the population from
which the sample was drawn. The criteria by which an esti-
mate is judged to be reliable require that it be precise and unbi-
ased, or, in other words, free from both major random and
systematic error (13). Small samples usually render parameter
estimates imprecise, or more vulnerable to the effects of
chance, but do not specifically cause them to be systematically
biased. When the parameter in question is a measure of clus-
tering, however, the correct classification of each clustered
case depends on other cases that share identical fingerprints
being included in the sample. If these cases are not included
because the sample is too small, clustered cases will be mis-
classified as unique and the resulting proportion of clustered
cases will be underestimated. This, in turn, results in underes-
timation of the extent of recent transmission and overestima-
tion of the extent of reactivation TB, as well as biased
estimation of the effects of risk factors for transmission. 

The magnitude of the bias incurred by sampling strategies
depends both on the sampling fraction and the frequency dis-
tribution of sizes of clusters in the population. A recent simu-
lation study of the influence of sampling on estimates of recent
TB transmission demonstrated that an increase in sampling
fraction yields an increase in the proportion of isolates identi-
fied as clustered (14). These simulations further showed that
underestimation of clustering is more marked in populations of
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isolates that include small clusters than those within which
large clusters predominate. For this study, I extended this
approach by using analytic methods in addition to simulations
to estimate the magnitude of the bias introduced by commonly
used sampling strategies in assessing the relative proportion of
clustered and unclustered cases and in estimating the relative
effect of potential risk factors for recent transmission.

Methods
The purpose of this study is to investigate biases inherent

in estimating measures of clustering and risk factors for clus-
tering when common sampling strategies are used to collect
the empirical data. Since the true distributions of cluster sizes
cannot be directly observed if sampling is not complete, I used
a Monte Carlo simulation model to generate a variety of hypo-
thetical cluster distributions based on simple assumptions
about TB transmission. These distributions represent a wide
range of potential data structures reflecting heterogeneous
transmission parameters, contact networks, and sociodemo-
graphic variables. Accordingly, my aim here is not to model
TB transmission dynamics with precision but to generate a
collection of heterogeneous cluster distributions that could be
used to demonstrate the effects of sampling, given a variety of
potential transmission settings. 

Generally, the microsimulation model enumerates a popu-
lation of discrete individuals, each of whom is characterized
by a vector of variables that affect risk for TB infection, for
clinical disease, and for transmitting infection once infected.
Persons are assigned to a series of social and physical spaces
such as households, neighborhoods, and multineighborhood
communities. The model also specifies the stochastic pro-
cesses by which latent disease reactivates, infection progresses
to primary TB, immunity is conferred by vaccination or by
previous infection, and duration of disease is determined. Per-
sons to whom disease is transmitted during the simulation
acquire a variable reflecting the strain number of the source of
their infection; thus, chains of disease transmission can be
identified as “clusters” of cases sharing a specific strain num-
ber. The model is run over a time period during which these
stochastic processes may occur. Output of the model includes
standard measures of the incidence of infection and disease,
the prevalence of infectious TB over time, and a count of clus-
ter sizes. Five different cluster distributions were generated on
the basis of running the model for 4 years with input variables
specific to the different geographic and social settings in
which TB is transmitted. The assumptions and baseline input
variables for the model have been described (15).

Estimation of Bias in Proportions of Unique 
and Clustered Cases

The proportion of unique cases calculated after sampling
and the variance of that proportion were estimated as follows.
Using the “n” method to estimate the proportion of clustered
cases, we assume that the true set of isolates is composed of nk
clusters of size k for k = 1,2,…,kmax. Further, we assume that

each subject in the true set of isolates is sampled indepen-
dently with a common sampling probability p. 

Let Iijk be the indicator of whether the ith subject i =1,...,k
from the cluster, j=1,…, nk, of size k has been sampled. Under
our assumptions, the Iijk are i.i.d. Bernoulli (p) random vari-
ables. The total number of subjects sampled is 

N=    .                   

Therefore, the expected value of the number of isolates is

   .
.

The variance of N is var(N) =

Now let Ujk = 1 if the number of isolates sampled from the
jth cluster of size k is precisely 1 and Ujk = 0 if otherwise. Then
the total number of unique isolates is 

U =    . 

Now Ujk is a Bernoulli random variable with success probabil-
ity kp(1-p)k-1 equal to the probability of choosing exactly one
member from the jth cluster of size k. Hence, 

         
  

var(U) =  

The expectation and large sample variance of the random
variable (U/N) are derived in Appendix 1. Using these formu-
lae for E(U/N) and var(U/N), estimates of the biased results for
a range of sampling fractions were calculated for each of the
five transmission scenarios described above. The results of
this analysis were verified against a computer simulation that
counted cluster sizes after random draws without replacing a
proportion p of the true populations of isolates. For each true
data set, the simulated data collection process was repeated
1,000 times. The mean value of the estimates obtained is
reported, in addition to simulated confidence intervals
expressed as values that represented the 0.05th and 0.95th
largest estimates. The variance of the empirical distribution for
the set of 1,000 simulations was nearly identical to that
obtained by the large sample variance formula for a ratio
expressed above. 

These simulations were repeated using the “n minus one”
approach, in which one case per cluster is removed from the
count of clustered cases and added to the count of
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reactivation cases. The analytic solution follows the same
logic (Appendix 2).

Estimation of Bias in the Relative Risks and 
Odds Ratios of Risk Factors for Recent Transmission

The magnitude of bias in the odds ratios of potential risk
factors introduced by the misclassification of clustering due to
sampling error was also assessed. Risk factors for clustering
were postulated to which were assigned “true” odds ratios of
2, 5, and 10. The prevalence of these risk factors in the
absence of clustering was set at 0.1. This exposure was thus
randomly assigned to 10% of the unclustered cases and pro-
portions of the clustered cases to obtain the specified odds
ratios in each of the modeled data sets. The odds ratios were
recalculated after sampling by moving the clustered cases that
were sampled as unique from the category of recently trans-
mitted cases to the category of reactivated cases and reassess-
ing the respective exposure status for these outcomes.

Results

Bias in Estimates of Proportion of Unique 
and Clustered Cases

Output from the transmission model (Table 1) includes
estimates of the incidence of TB infection and clinical TB dis-
ease, as well as a summary of the frequency distribution of
cluster size for each scenario. The proportion of unique iso-
lates that would be observed after sampling a given fraction of
the isolates in the complete data sets for each of the five sce-
narios was estimated analytically and verified by computer
simulation. These methods produced nearly identical results,
demonstrating that there is often substantial bias in the esti-
mated proportions of unique and clustered cases of TB when
sampling is based on sampling fractions consistent with those
used in common epidemiologic practice. Table 2 summarizes
the error in the measurement of the proportion of unique and
clustered cases of TB introduced by sampling various fractions
of the data from the range of transmission scenarios. These
results are given for both the “n” and “n minus one” methods
of counting clustered cases; they show that the error in these

estimates depends on both the “true” transmission pattern and
the fraction of the total data sampled. Transmission scenarios
in which there is a higher “true” proportion of unique cases
and those in which transmission is concentrated in large clus-
ters tend to demonstrate less error than those in which there are
fewer unique cases and more small clusters. In all cases in
which the estimate is biased, the estimated proportion of
unique cases is an overestimate of the true value, indicating
that the error in these estimates tends to inflate the proportion
of TB cases due to reactivation and minimize the proportion
due to recent transmission. In many simulations, all of the
1,000 estimates obtained were less than the true proportion. 

Bias in Odds Ratios for Risk Factors for Clustering
The bias in the proportions of clustered and unclustered

cases results from misclassification of cluster status due to
inadequate sampling; this misclassification also biases the
results of analyses of risk factors for recent transmission in the
direction of the null hypothesis of no effect. Table 2 also pre-
sents estimates of the odds ratios for the effect of a range of
hypothetical risk factors for recent transmission. These results
show that the odds ratios of a risk factor for clustering are
markedly underestimated in the transmission scenarios in
which there are lower proportions of unique cases or in which
smaller cluster predominate. This bias is especially marked
when odds ratios are high; in the worst-case scenario described
in Table 2, an odds ratio of 10 could be estimated as 1.58 when
only 10% of the isolates are sampled.

Discussion
The recent development of molecular methods to accu-

rately type infectious organisms has led to a marked prolifera-
tion in studies of the molecular epidemiology of infectious
diseases, especially of TB. The goals of many of these studies
have been to address the longstanding problem of assessing
the relative proportions of incident TB cases due to recent
transmission and to chronic or reactivated disease and to iden-
tify risk factors for recent transmission. A systematic bias that
consistently underestimates the proportion of cases due to
recent transmission could present a serious impediment to the

Table 1. Model-based output statistics from a microsimulation of tuberculosis transmission

Output statistics

High burden Moderate burden Low burden

Sudan NY prison Algeria US prison Netherlands

Tuberculosis incidencea 190 581 32 82 14

Consensus incidence estimates 200 NAb 44 NAb 10

ARIc 0.025 0.046 0.003 0.005 0.001

Maximum cluster size 87 19 9 17 15

Mean cluster size 10.2 3.2 1.7 2.9 1.7

Proportion of unique isolates 0.181 0.253 0.432 0.289 0.490
aIncidence per 100,000. Consensus incidence estimates are shown for comparison with estimates obtained from the model.
bNo data available.
cARI = Annual risk of infection.
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constructive use of molecular typing techniques for studying
the epidemiology of infectious disease.

The results of this study show the extent to which bias can
be introduced by sampling strategies commonly used in the
molecular epidemiology of TB. Depending on the underlying
distribution of cluster sizes, the error involved in underesti-

mating the proportion of unique TB isolates in a sample may
be sizable, even when up to 70% of the complete data is sam-
pled. The odds ratios for risk factors for clustering are also
consistently and markedly underestimated with this approach.
The findings of this study support the conclusions of previous
investigators (14) who have shown that the extent of error in

Table 2. Monte Carlo means and 95% ranges for the proportion of unique isolates and for odds ratios after sampling a fraction of the complete 
data set.

Country/Specific Statistics

Sampling fraction

1 0.7 0.5 0.1

Sudan

Proportion of reactivated isolates

    n method 0.18 0.19 (0.18-0.19) 0.21 (0.19-0.23) 0.37 (0.30-0.43)

    “n minus one” method 0.28 0.32 (0.30-0.34) 0.35 (0.30-0.41) 0.54 (0.47-0.62)

Odds ratiosa 2 1.88 (1.87-1.97) 1.77 (1.66-1.88) 1.34 (1.28-1.45)

5 4.18 (4.13-4.78) 3.51 (3.01-4.18) 1.84 (1.60-2.18)

10 7.52 (7.38-9.27) 1.84 (1.67-1.84) 2.37 (2.08-2.99)

New York prisons

Proportion of reactivated isolates

    n method 0.12 0.14 (0.12-0.16) 0.16 (0.13-0.20) 0.45 (0.28-0.62)

    “n minus one” method 0.33 0.36 (0.33-0.38) 0.39 (0.32-0.45) 0.67 (0.61-0.73)

Odds ratios 2 1.77 (1.60-1.95) 1.62 (1.45-1.83) 1.16 (1.12-1.29)

5 3.51 (2.73-4.58) 2.78 (2.18-3.83) 1.37 (1.25-1.37)

10 5.79 (4.07-8.66) 4.17 (2.99-6.58) 1.58 (1.39-2.12)

Algeria

Proportion of reactivated isolates

    n method 0.43 0.48 (0.45-0.51) 0.16 (0.13-0.20) 0.45 (0.28-0.62)

    “n minus one” method 0.65 0.71 (0.69-0.74) 0.76 (0.69-0.83) 0.92 (0.81-0.99)

Odds ratios 2 1.81 (1.75-1.92) 1.67(1.45-1.97) 1.29 (1.18-1.73)

5 3.68 (2.79-4.82) 3.02 (2.99-4.73) 1.98 (1.77-2.33)

10 6.58 (5.55-8.23) 5.05 (4.17-6.58) 2.62 (2.26-3.28)

U.S. prisons

Proportion of reactivated isolates

    n method 0.29 0.33 (0.29-0.39) 0.37 (0.29-0.48) 0.68 (0.35-1.00)

    “n minus one” method 0.33 0.35 (0.31-0.38) 0.37 (0.32-0.41) 0.62 (0.50-0.73)

Odds ratios 2 1.8 (1.62-1.98) 1.67 (1.45-1.97) 1.29 (1.18-1.73)

5 3.68 (2.79-4.82) 3.02 (2.99-4.73) 2.11 (1.62-5.31)

10 6.86 (5.30-9.66)) 4.67 (3.02-9.13) 2.11 (1.62-5.31)

Netherlands

Proportion of reactivated isolates

    n method 0.49 0.62 (0.55-0.69) 0.62 (0.55-0.69) 0.89 (0.77-1.00)

    “n minus one” method 0.65 0.78 (0.72-0.85) 0.78 (0.72-0.85) 0.93 (0.79-1.00)

Odds ratios 2 1.8 (1.62-1.98) 1.67 (1.57-1.81) 1.40 (1.31-1.49)

5 3.68 (2.79-4.82) 3.05 (2.63-3.78) 2.02 (1.79-2.32)

10 6.86 (5.30-9.66)) 4.76 (3.86-6.47) 3.86 (2.39-3.25)
aConfidence intervals for odds ratios are based on the results of 2 by 2 tables, with data adjusted for the mean misclassification introduced by sampling.
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these estimates is a function of both sampling fraction and
underlying cluster distribution in the complete data sets. These
results imply that reasonable predictions of the extent of error
can be made, given knowledge of both the true distribution of
cluster sizes in the population of persons with TB and the size
of the population of TB patients from which the sample was
drawn. Although the true distribution of cluster sizes cannot be
observed in the absence of complete sampling, epidemic mod-
els such as this one may elucidate factors that contribute to
these distributions and help investigators arrive at prior expec-
tations of cluster distributions in the specific transmission sce-
narios under study. 

I considered how much impact this kind of sampling bias
might have had on the studies of the molecular epidemiology
of TB published to date. Many researchers report on a conve-
nience sample of cases drawn from one or more clinical sites,
without providing an estimate of the number of incident cases
in the area in question during the period in which the cases
were collected (16-19). In areas with high TB prevalence, the
number of cases in these series is often <1% of the number of
cases expected in that region on the basis of national reporting
or World Health Organization predictions. These results sug-
gest that the bias expected in these studies is so extreme that
the findings are useful only as lower bounds for the proportion
of recently transmitted cases and for risk factors for recent
transmission. Nonetheless, lower bounds may be informative
in situations in which undetected transmission is incorrectly
attributed to reactivation disease alone or when a new risk fac-
tor for transmission is identified.

In industrialized countries with lower rates of incident TB,
researchers have tried to enroll a compete cohort of patients by
making use of public health reporting systems to identify and
fingerprint all new cases of clinical TB in a defined geographic
region during a specified time period (4,5,20-22). Although
this approach leads to much more complete and systematic
sampling, it may not always ensure that the resulting estimates
are free from bias. For these series of cases to be complete
samples, one would have to assume that none of the cases in
the sample had transmission links to cases that did not appear
in the study population or were reported before the onset of the
study. Furthermore, the most rigorously documented TB fin-
gerprinting studies have reported 15%-40% loss of data as a
result of difficulties in culturing, fingerprinting, and interpret-
ing fingerprint patterns (4,5,20-22). Even if the patients
excluded from these studies resemble those retained in every
other respect, their exclusion will result in a biased outcome of
the study. 

The “complete” data sets used to estimate bias in this study
were generated through stochastic epidemic modeling that out-
puts cluster distributions in addition to estimates of the inci-
dence of TB infection and disease. Multiple demographic and
disease-specific parameters have been found to affect cluster
distributions, and many potential “transmission scenarios”
could be generated by varying these parameters. In addition,
the length of the study period and the stability of the molecular

markers used will impact the observed patterns of clustering
(23,24). Given that true cluster distributions cannot be known
in the absence of complete sampling, the model cannot be val-
idated by using it to derive known cluster distributions. Since
the purpose of this study is to explore the bias in measures
commonly used in empirical studies of molecular epidemiol-
ogy, sets of parameters were chosen from a variety of specific
areas in which the burden of TB disease has been described or
projected based on the information currently available.
Although the true transmission patterns in any particular popu-
lation may be inadequately captured by the epidemic model
used, these results do provide some perspective on the poten-
tial misinterpretation of molecular data on TB. The simula-
tions may also differ from data sets obtained in the field in that
sampling was random and the very real problem of selection
bias in the collection of isolates was not addressed. Finally, in
the assessment of the bias in the estimates of the effect of risk
factors for clustering, I assigned risk status randomly within
groups of clustered and unique cases. If cluster size were cor-
related with a risk factor for clustering, so that, for example,
incarceration was more common among cases in large clusters
than small ones, the bias in the odds ratio of incarceration
would be less than the estimates reported here. 

These results demonstrate that estimates of clustering
based on molecular fingerprinting of a population of isolates
of infectious agents may be severely biased. When these meth-
ods are used to estimate the extent of primary and reactivation
disease in a community, they consistently underestimate recent
transmission. In circumstances in which the error is greatest,
the bias may undermine the value of an investigation by pro-
viding a community with false reassurance that ongoing trans-
mission is being curtailed and therefore that control measures
are adequate.

The findings of this study further suggest that molecular
methods in epidemiology require the development of both
appropriate epidemiologic study design and analytic tools to
yield meaningful assessments of disease transmission. In par-
ticular, they imply that estimates of recent transmission
obtained by molecular methods cannot be compared across
studies which have used different sampling fractions and in
which the distribution of cluster size can reasonably be
expected to vary. One way for molecular epidemiologists to
approach this problem is to provide sensitivity analyses esti-
mating the potential error involved, given prior expectations of
cluster distributions and an estimate of the fraction of cases
sampled in a particular study. The analytic solution presented
here can be easily programmed and used to explore the range
of potential error under a variety of hypothetical transmission
scenarios.
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Appendix 1
We wish to derive the expectation and variance of the ran-

dom variable U/N, denoting the proportion of all sampled iso-
lates that form a unique cluster of size 1 in the sample. In large
samples, the mean of U/N is approximately the ratio of the
mean of U to the mean of N:

            E
and the variance of U/N is approximated by the large sample
variance formula for a ratio.

var(U/N)  

It only remains to evaluate cov(U,N), which is done in the
following lemma.

Lemma: Under our assumptions,

cov(U,N) = 

Proof: by independence, cov(U,N) =  

where          . Now, cov(Ujk,Njk) = E(Ujk, Njk) – 

E(Ujk)-E(Njk) = E(Ujk)- E(Ujk)-E(Njk)= E(Ujk)[1- E(Njk)]
where E(Ujk) = kp(1-p)k – 1 and E(Njk) = nkp. The result then
follows. 

Appendix 2
The bias in the proportion of reactivated cases after sam-

pling when the clustered cases are counted by using the “n
minus one” method is described below. The number of cases
considered to be due to reactivation is the sum of the unique
cases and the source cases. The “true” number of source cases 
is equal to the number of clusters in the complete data set,        

. 

We are interested in finding the number of source cases after
sampling. Since the number of source cases in a sample is
equal to the “true” number of source cases minus the source
cases that are not sampled or are sampled as unique, we need
to estimate the expected value of the numbers of clusters not
sampled and the expected value of the clusters sampled as
unique. Let E(CL0) and E(CL1) be the expected values of the

≅

numbers of clustered not sampled or sampled as unique,
respectively. Then, by using the nomenclature defined in the
text and following the logic there described:

E(CL0) = and  E(CL1) = 

The expected number of source cases after sampling a
fraction p of the complete set of isolates is equal to 

 

 
The overall estimate of the proportion of reactivated cases

can then be obtained by summing the number of unique cases
after sampling with the number of source cases and dividing
by the expected number of sampled isolates, p(N).
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