Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 8, Number 5—May 2002

Research

Risk to Human Health from a Plethora of Simian Immunodeficiency Viruses in Primate Bushmeat

Martine Peeters*Comments to Author , Valerie Courgnaud*, Bernadette Abela†, Philippe Auzel†‡, Xavier Pourrut*, Frederic Bibollet-Ruche§, Severin Loul†, Florian Liegeois*, Cristelle Butel*, Denis Koulagna¶, Eitel Mpoudi-Ngole†, George M. Shaw§, Beatrice H. Hahn§, and Eric Delaporte*
Author affiliations: *Institut de Recherche pour le Développement (IRD), Montpellier, France; †Projet Prevention du Sida au Cameroun (PRESICA), Yaounde, Cameroon; ‡Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, Belgium; §University of Alabama at Birmingham, Birmingham, Alabama, USA; ¶Ministry of Environment and Forestry, Yaounde, Cameroon;

Main Article

Figure 2

Identification of diverse Simian immunodeficiency virus (SIV) lineages in primate bushmeat. A 650-bp pol fragment was amplified from monkeys representing seven primate species, sequenced, and subjected to phylogenetic tree analysis by the neighbor-joining method. The positions of 21 SIV sequences from the present study (in color) are shown in relation to HIV/SIV reference sequences from the Los Alamos HIV/SIV Sequence Database (in black). The consensus length of the final alignment used for tree construction was 555 bp. The new species-specific SIV lineages are generally identified by a lower-case three-letter code corresponding to the initial letters of the common species name (e.g., SIVgsn for greater spot-nosed monkeys [Cercopithecus nictitans], SIVmus for mustached guenons [C. cephus] and SIVmon for mona monkeys [C. mona]). Lineages are defined as clusters of viral sequences from the same primate species that group together with significant (>80%) bootstrap values. We maintained the lineage designation of SIVtal previously assigned to a virus thought to be derived from a zoo animal of the species Miopithecus talapoin  (28) since that sequence, and the two newly derived talapoin viruses from M. ogouensis, cluster together in a phylogenetic tree derived from additional pol nucleotide sequences (not shown). Branch lengths are drawn to scale (the bar indicates 10% divergence). The numbers at the nodes indicate the percent bootstrap values supporting the cluster to the right (only values >80% are shown).

Figure 2. Identification of diverse Simian immunodeficiency virus (SIV) lineages in primate bushmeat. A 650-bp pol fragment was amplified from monkeys representing seven primate species, sequenced, and subjected to phylogenetic tree analysis by the neighbor-joining method. The positions of 21 SIV sequences from the present study (in color) are shown in relation to HIV/SIV reference sequences from the Los Alamos HIV/SIV Sequence Database (in black). The consensus length of the final alignment used for tree construction was 555 bp. The new species-specific SIV lineages are generally identified by a lower-case three-letter code corresponding to the initial letters of the common species name (e.g., SIVgsn for greater spot-nosed monkeys [Cercopithecus nictitans], SIVmus for mustached guenons [C. cephus] and SIVmon for mona monkeys [C. mona]). Lineages are defined as clusters of viral sequences from the same primate species that group together with significant (>80%) bootstrap values. We maintained the lineage designation of SIVtal previously assigned to a virus thought to be derived from a zoo animal of the species Miopithecus talapoin (28) since that sequence, and the two newly derived talapoin viruses from M. ogouensis, cluster together in a phylogenetic tree derived from additional pol nucleotide sequences (not shown). Branch lengths are drawn to scale (the bar indicates 10% divergence). The numbers at the nodes indicate the percent bootstrap values supporting the cluster to the right (only values >80% are shown).

Main Article

TOP