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Applying Network Theory to 
Epidemics: Control Measures for 

Mycoplasma pneumoniae Outbreaks
Lauren Ancel Meyers,*† M.E.J. Newman,*‡ Michael Martin,§ and Stephanie Schrag§

We introduce a novel mathematical approach to investigat-
ing the spread and control of communicable infections in
closed communities. Mycoplasma pneumoniae is a major
cause of bacterial pneumonia in the United States. Outbreaks
of illness attributable to mycoplasma commonly occur in closed
or semi-closed communities. These outbreaks are difficult to
contain because of delays in outbreak detection, the long incu-
bation period of the bacterium, and an incomplete understand-
ing of the effectiveness of infection control strategies. Our
model explicitly captures the patterns of interactions among
patients and caregivers in an institution with multiple wards.
Analysis of this contact network predicts that, despite the rela-
tively low prevalence of mycoplasma pneumonia found among
caregivers, the patterns of caregiver activity and the extent to
which they are protected against infection may be fundamental
to the control and prevention of mycoplasma outbreaks. In par-
ticular, the most effective interventions are those that reduce
the diversity of interactions between caregivers and patients.

athematical modeling has a rich and growing tradition in
epidemiology (1–3). Because experimental approaches

to epidemic interventions are often impractical, and in some
cases unethical, mathematical models can provide otherwise
unobtainable insights on the spread and control of disease.
Recently, considerable interest has been shown in the effect of
contact networks on the spread of disease, and particularly in
using the so-called percolation theory to model epidemics (4–
10). Agent-based simulation is also being used increasingly to
help epidemiologic investigations (11). In this paper, we use
both of these tools to assess the effects of epidemic interven-
tions in closed health-care facilities. 

Mycoplasma pneumoniae is a major cause of bacterial
pneumonia in the United States (12). This bacterium, the
smallest self-replicating organism capable of cell-free exist-
ence, is spread both by direct contact between an infected per-
son and a susceptible person, and by airborne droplets
expelled when an infected person sneezes, coughs, or talks.
Large, sustained outbreaks of M. pneumoniae have occurred in
closed and semi-closed populations such as hospitals, psychi-

atric institutions, military and religious communities, and pris-
ons (13–15). Public health officials and health-care providers
struggle, often with little success, to control mycoplasma out-
breaks because of the long incubation period of the organism,
late detection of outbreaks, and an incomplete understanding
of the effectiveness of various infection control strategies. 

Effective measures to control mycoplasma outbreaks are
needed to limit the associated illness and substantial costs.
Previous work has addressed candidate strategies, including
infection control practices to prevent the exchange of respira-
tory droplets between patients and caregivers, cohorting mem-
bers of the community who display symptoms of a respiratory
infection, and antibiotic prophylaxis of asymptomatic mem-
bers of the community (14–16). The costs of these strategies
include curtailed social interactions because of cohorting,
undesirable side effects or allergic reactions to prophylactic
antibiotics, and a potential increase in the risk for infections
caused by antibiotic-resistant bacteria. Studies of these control
measures have been limited by incomplete information and
participation.

Using a network model approach, we show how data on
interactions in real-world communities can be translated into
graphs—mathematical representations of networks—and how
to predict the course of an epidemic from the structure of a
graph. We found that the assignment of caregivers to patient
groups is more critical to the course of an epidemic than the
cohorting of patients. Within our models, the most effective
interventions are those that reduce the diversity of interactions
that caregivers have with patients. For example, an institution
with many wards can avoid a large outbreak by confining care-
givers to work in only one or very few wards. 

The Model
Here we model an institution with spatially disjointed

wards. Patients are confined to a single ward, and caregivers
work in one or more wards. Each person or ward is repre-
sented by a “vertex” in the graph. “Edges” connect people to
the wards in which they reside or work. Figure 1 shows the
graph for an institution with four wards, each with three or
four patients and two to four caregivers. 

A key property of graphs is their degree distribution. The
degree of a vertex is the number of other vertices to which it is
connected. In Figure 1, for example, the degree of all patients
is one; the degree of each caregiver ranges from one to four;
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and the degree of the wards ranges from six to seven, indicat-
ing the number of inhabitants and caregivers working there.
Direct transmission of M. pneumoniae can only occur between
two vertices if an edge connects them. 

Throughout this model, we allow transmission to occur
between people and places. We do not mean that bacteria actu-

ally infect a space by residing on inanimate objects or in the
air. Rather, we mean that the person has transmitted the bacte-
ria to another person who resides or works in that place. Con-
versely, when a place transmits to a person, we mean that the
bacterium is transmitted to an uninfected person living or
working in that place.

We begin by considering only the caregivers and wards.
Later we add the patients to the model. (All notations are
defined in the Table.) A probability generating function (pgf)
is a mathematical quantity that describes a probability distribu-
tion, and thereby summarizes a large amount of useful infor-
mation about the network architecture. We can define pgfs that
capture the distribution of the number of wards assigned to
each caregiver and the distribution of the number of caregivers
working in each ward. 

Pgfs can be mathematically manipulated to give many use-
ful results. For example, the derivative gives the average of the
distribution, e.g., the mean number of wards assigned to a car-
egiver, or the mean number of caregivers working in a ward.
We can also answer the following question using pgfs: If an
infected caregiver exposes a ward, how many other caregivers,

Figure 1. Health-care institution network. Each vertex represents a
patient, caregiver, or ward, and edges between person and place verti-
ces indicate that a patient resides in a ward or a caregiver works in a
ward.

Table. Notation for epidemiologic interaction network model 

Notation Definition

W Number of wards in the facility

C Number of caregivers working in the facility

µw Average no. of caregivers working in a ward

µc Average no. of wards in which a caregiver works

r Probability that a given caregiver works in a given ward

pk Probability that a caregiver works in k wards

qk Probability that a ward has k caregivers working in it

f0 (x) Probability generating function (pgf) for the degree distribution of caregivers

g0 (x) pgf for the degree distribution of wards

f1 (x) First select a random ward, and then select a random caregiver working there. This expression represents the pgf for the number of other 
wards in which that caregiver works.

g1 (x) First select a random caregiver, and then select a random ward associated with that caregiver. This expression represents the pgf for the 
number of other caregivers working in that ward.

τw Probability of transmission from a ward to a caregiver

τc Probability of transmission from a caregiver to a ward

Φ0 (x) pgf for the number of wards affected by transmission from a random caregiver

Φ1 (x) First select a random ward and assume that it is affected by the bacterium, then select a random caregiver working there. This expression 
represents the pgf for the number of other wards affected by that caregiver.

Γ0 (x) pgf for the number of caregivers affected by transmission from a random ward

Γ1 (x) First select a random caregiver and assume he/she is infected, then select a random ward in which that caregiver works. This expression 
represents the pgf for the number of other caregivers infected by individuals working/living in that ward.

〈s〉 Average number of wards affected in an outbreak

1–Sc The size of the caregiver giant component—the largest set of infected caregivers that are all connected through work in common wards

1–Sw The size of the ward giant component—the largest set of affected wards that are all connected through common caregivers

βw(x) pgf for the number of patients in affected ward w who contract the bacterium

B(x) pgf for the total number of patients in the facility who are infected during an epidemic
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on average, will be vulnerable to infection because they also
work in that ward? Appendix A (online only) defines our pgfs
and describes the derivations that answer this question.

Transmission through the Graph
Transmission of M. pneumoniae occurs when people

occupy the same physical space for some period of time.
Therefore, in our model, transmission can occur between per-
sons if the vertices representing them are connected to the
same ward. 

We derive two complementary estimates for the size of an
outbreak. The first is appropriate for conditions not conducive
to large outbreaks, such as a pathogen with low transmissibil-
ity, or an institution with few interpersonal interactions. The
second applies to conditions that favor large outbreaks. 

We begin with two questions. If a healthy caregiver works
in an infected ward, how many other wards will eventually
become infected as a result of that caregiver’s interaction with
that ward? Similarly, if an infected caregiver works in a yet
uninfected ward, how many other caregivers will eventually
become infected as a result of that caregiver’s activity in that
ward? Answers to these questions vary from ward to ward and
from caregiver to caregiver. Therefore, we calculate probabil-
ity distributions for the spread, which we represent by using
pgfs. 

First, consider an edge linking an infected ward to a care-
giver. Figure 2 breaks down the possible scenarios. First, the
caregiver may not become infected. Second, the caregiver
might become infected but not transmit to any other wards.
Third, the caregiver might transmit infection to one or more
other wards in which he or she works. In Appendix B (online
only), we construct a pgf by summing up the probabilities of
these different outcomes. 

Next, we start with an edge from an infected caregiver to a
ward. As shown in Figure 3, there may be no transmission
along the edge in question to the ward, no further transmission
from the ward to other people, or transmission to one or more
other people who spend time in the ward.

With these two pgfs, we derive the average size of a small
outbreak, starting from a single infection:

  
  [1]

where f ′  denotes the first derivative of f with respect to its
argument. Thus, the average size of the outbreak is 1 (the orig-
inal patient) plus a function of the two transmission rates (from
caregivers to wards, τc, and from wards to caregivers,τw ), and
the average number of wards assigned to a caregiver (f0'(1)).
The term f1'(1) assumes that we choose any ward at random
from the entire network, then choose one of the edges con-
nected to that ward at random, then follow that edge to a care-
giver, and finally calculate the number of other wards assigned
to the caregiver. On average, that will be f1'(1). Likewise g1'(1)
is the average number of other caregivers working in a ward
that we reach by first choosing a caregiver at random and then

randomly choosing one of the wards in which the caregiver
works. These terms contain information not only about the
average degrees of caregivers and wards but also about the
probability that a given caregiver or node will become infected
in the first place.

The expression for 〈s〉 diverges when 
[2]

This expression represents the transition between a regime in
which only small isolated outbreaks of disease can occur and
one in which a full-blown community-wide epidemic can
occur. A community will cross that transition point if trans-
mission rates are sufficiently high (τw and τc ) or the interac-
tions among wards and caregivers are sufficiently dense
( f1'(1) and g1'(1) ). Equation no. 1 provides an estimate of the
epidemic size below the threshold only. It is based on the
assumption that interactions are rare enough that a person or a
place only encounters the infection once. When interactions
are more common and the community lies above the epidemic
transition, we must use a different estimate for the size of the
outbreak. 

The “giant component” of the graph is the largest con-
nected set of vertices that have all been infected. The size of
the outbreak above the epidemic transition is exactly equal to
the number of vertices in this giant component. We calculate
the size of the giant component (the number of caregivers
affected) by calculating the fraction of vertices not contained
in it:

, [3]
where Φ0(1) is the probability that an infected caregiver will
produce no further infections (Appendix B, online only). A
similar expression describes the number of wards affected in
an epidemic:

. [4]
These expressions reflect both the fraction of the population
infected and the probability that an outbreak will reach epi-
demic proportions in the first place. Since Sc and Sw are often
much less than 1, not all outbreaks turn into epidemics, even
above the epidemic transition.

Degree Distributions
Equation nos. 3 and 4 allow us to estimate the size of an

epidemic on the basis of transmission probabilities and the
degree distribution of caregivers to wards. To make specific
numerical predictions, we must first calculate pgfs for the
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Figure 2. Future transmission diagram I, summing all possible future
transmissions stemming from a caregiver who works in an infected
ward.

1 1(1) (1) 1.w c f gτ τ ′ ′ =

01 (1)cS− = Φ

01 (1)wS− = Γ



Emerging Infectious Diseases  •  Vol. 9, No. 2, February 2003 207

RESEARCH

degree distributions. Here we make the simple assumption
that the degree distributions follow a Poisson distribution for
both the number of wards associated with a given caregiver
and the number of caregivers associated with a given ward.
This assumption is equivalent to requiring that all caregivers
have an equal likelihood of working in any ward and that a
caregiver is assigned to any given ward independent of his or
her other ward assignments. In the absence of more specific
information about assignment to wards, this assumption
seems a reasonable first step. This distribution assumes an
infinite population and is generally applied to very large pop-
ulations. Although perhaps not the ideal model for small insti-
tutions, this distribution is used here because it yields pgfs
with convenient mathematical properties (see Appendix C,
online only). 

Case Study
Data gathered by the Centers for Disease Control and Pre-

vention (CDC) during a recent mycoplasma outbreak allowed
us to extract values for the parameters in our theory. In 1999,
an outbreak of mycoplasma pneumonia occurred in a psychiat-
ric institution (14). All 15 wards at the institution were
affected, with 60 of 257 residents and 82 of 440 employees
diagnosed with mycoplasma-like illness. In the following sec-
tions, we predict the epidemic threshold for this institution.
The threshold is a function of the degree distribution of care-
givers and transmission rates, the size of the epidemic above
the threshold, and a range of realistic transmission rates for M.
pneumoniae in this outbreak. 

We assumed that each patient was confined to a single
ward. While this was not true for all patients at the institution,
it simplified the mathematics and allowed us to make a reason-
able approximation of the epidemiology. Interactions between
patients in separate wards will increase the threat of a full-
blown epidemic and make early intervention all the more criti-
cal. Including such interactions in the model is possible by
adding edges to the graph that connect patients to multiple
wards. This scenario can be solved exactly by using tech-
niques similar to those presented here. 

Epidemic Threshold
If we assume that the degree distributions for wards and

caregivers are Poissonian, the epidemic threshold (equation
no. 2) is equivalent to

.
In other words, when the product of the transmission rates, the
average number of caregivers per ward, and the average num-
ber of wards per caregiver exceeds 1, epidemics become possi-
ble. In the psychiatric institution,W = 15  and C = 440 , hence  

       and the threshold becomes                        .
Figure 4 illustrates the epidemic threshold for five different
demographic scenarios (µc = 1,2,3,4,5). For the most densely
connected case, when each caregiver works in five wards on
average, the epidemic threshold is crossed at very low rates of
transmission. When the community is less densely connected,
it can withstand much higher infectivity without giving rise to
epidemics.

Calculating the Size of the Epidemic
Combining equation no. 2 with equations 5, 6, 7, and 8

from online Appendix C, we derived the following:

 [9]
Given values for demographic parameters µc and µw, we
search for the value of Φ0(1) that satisfies equation no. 9
numerically. Then, the predicted number of caregivers infected
during an epidemic is Sc = 1 - Φ0(1). (The number of affected
wards is similarly derived.) Since we know neither the exact
distribution of caregivers in wards nor the transmission rates
between caregivers and wards, we solve for the size of the epi-
demic outbreak in a range of values of the three independent
parameters µc, τc and τw.

Figure 5 shows both the fraction of wards and caregivers
infected in our model as a function of the number of wards per
caregiver (µc), and the fraction of wards and caregivers

Figure 3. Future transmission diagram II, summing all possible future
transmissions stemming from a ward in which an infected caregiver
works.

1w c w cτ τ µ µ =

440
15w cµ µ= 2440

15 1c w cµ τ τ =

[ ]0 0(1) exp (1 exp[ (1 (1) 1] 1) .w c c c w wµ τ τ µ τ τΦ = − + − + Φ − −

Figure 4. Epidemic thresholds. Each line assumes a different value for
µc (the average number of wards per caregiver), and graphs the combi-
nation ofτc and τw and (transmission parameters) above which the pop-
ulation crosses the epidemic threshold. From top to bottom, the lines
represent µc = 1, µc = 2, µc = 3, µc = 4, and µc = 5.



RESEARCH

208 Emerging Infectious Diseases  •  Vol. 9, No. 2, February 2003

infected in the actual outbreak. We assume transmission rates
of τc = 0.6 and τw = 0.6 (discussed below). The top dashed
line indicates that 100% of the wards were affected during the
actual epidemic. The lower horizontal lines depict the upper
and lower bound empirical estimates for the number of care-
givers affected (TB Hyde, unpub. data). As µc increases, so
does the possibility of transmission from one ward to another
through caregivers that work in both. The number of wards
affected climbs sharply to 100% (as actually occurred in this
outbreak), whereas the number of caregivers climbs more
gradually, passing through the realistic range at relatively low
values of µc.

This analysis suggests that the likelihood of an epidemic
and the eventual size of an epidemic, should one occur, are
highly sensitive to the degree distribution for caregivers.
Transmission of M. pneumoniae is limited, and the extent and
duration of the outbreak are reduced if each caregiver’s activi-
ties are confined to just a few wards. 

The derivations given here are exact in the limit of large
network size. To assess their accuracy on networks like these
with a few hundred vertices, we have constructed specific
graphs that realize these distributions and performed com-
puter simulations of the spread of epidemics on them. Each
simulation constructs a network with 15 wards and 440 care-
givers, where the degree distribution of each caregiver is
binomial with n = 15, and p such that np = µc. We assume
constant infection periods of δc = 14 days (for caregivers)
and δw = 21 days (for wards) and that contact between a car-
egiver and a ward occurs independently of any other such
contact. Initially a single, randomly chosen caregiver is
infected. Every day, transmission occurs from an infected
caregiver to a connected ward with probability τc. Thus, the
probability that the caregiver will transmit the infection to
the connected ward at all is 1 - (1 - τc)δc. Likewise, the daily
transmission rate from an affected ward to a healthy care-
giver that works there is 1 - (1 - τw)δw . 

Figure 6 shows a frequency distribution of the sizes of epi-
demics for 1,000 runs of the simulation. Figure 7 compares
these results with the predictions of our analytic theory.  As the
figure clearly shows, the agreement between simulation and
theory is excellent.

Inferring Transmission Rates
Our numeric method also allows us to pinpoint transmis-

sion rates that are consistent with the empirical observations.
Assuming the average caregiver works in one to four wards,
we identify transmission rates that predict the observed num-
bers of affected caregivers and wards. We find that τc ∈ [0.2,1]
and τw ∈ [0.03,0.1]. Transmission from an infected caregiver
to at least one patient in a ward must therefore be about 10
times more likely than transmission from a ward with sick
patients to a caregiver who works in that ward. Remarkably,
caregivers are not likely to become infected, yet when they are
infected, they become the primary vehicles for spreading bac-
teria from ward to ward. Hence the most effective interven-
tions will be those that prevent transmission to caregivers.

The Patients
Based on the outbreak data, the probability that a particular

patient will become infected if at least one other patient in the
ward is infected is 0.15 (0.02) for confirmed cases or 0.23
(0.02) when probable cases are included.1 Figure 8 shows the
within-ward transmission rates and ward size for the 15 wards.

Figure 5. Size of epidemic. Predicted and actual number of caregivers
and wards affected in an outbreak. These predictions assume that the
transmission rate from caregivers to wards isτc = 0.6  and from wards
to caregivers is τw = 0.06.

Figure 6. Simulated outbreak sizes. Frequency distributions of the
numbers of wards and caregivers affected in 1,000 epidemic simula-
tions are shown for µc = 1,2,3.

Figure 7. Comparing derivations to simulation. This graph compares
the analytical predictions to the size of a simulated outbreak averaged
over 1,000 simulations for each value of µc.

1We calculate these rates by averaging the fraction of infected patients per
ward across the 15 wards and compute the error by taking the standard
deviation of these fractions, divided by the square root of the sample size.
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Although not shown, ward size and the transmission rate are
not correlated.

We simulate the spread of M. pneumoniae among patients,
assuming the ward size distribution shown in Figure 8, and
assuming that the number of patients infected per ward follows
a binomial distribution with probability parameter p. (The Pois-
son approximation is inappropriate as it only applies to very
large wards with small transmission rates.) That is, all 15 wards
are assumed to be affected, and each patient in a ward becomes
infected with probability p. Figure 9 shows frequency distribu-
tions for the fraction of patients infected in 100,000 simulations
at three values of p (p = 0.2,0.25,0.3). These distributions
resemble the actual frequency distribution shown in Figure 8,
and thereby support the binomial approximation. 

Discussion
Network theory enables epidemiologists to model explic-

itly and analyze patterns of human interactions that are poten-
tial routes for transmission of an infectious disease. The
statistical properties of an epidemic graph determine the extent
to which an infectious agent can spread. By manipulating the
structure of a graph, we can identify interventions that may
dramatically alter the course of an epidemic, or even prevent
one altogether, and translate them into measures that make

sense in a real community. In this paper, we have used network
methods to model the spread of a respiratory tract infection in
a health-care facility.

How might this be applied to a real outbreak? We have
considered data from a recent investigation of an outbreak of
M. pneumoniae in a residential psychiatric institution (14). In
that investigation, standard infection control practices, includ-
ing strict respiratory droplet precautions, cohorting of ill
patients, and employee education about mycoplasma illness
and symptoms were instituted at the facility. Unfortunately, M.
pneumoniae has a long incubation period (1–4 weeks), during
which time an asymptomatic, infected person can transmit the
bacterium to an uninfected person. This long incubation period
limits the beneficial effect of cohorting, since infected persons
are only identified and taken out of the community after they
have passed through the incubation period. 

In both the outbreak and our model (assuming parameters
based on this particular institution), caregivers are less likely
to become infected than are patients. This observation may
mislead investigators and lead to inappropriate recommenda-
tions. Although caregivers are less likely to become ill, they
are the primary vectors of infection in the facility. Our model
suggests that transmission rates from patients to caregivers are
lower than transmission rates from caregivers to patients.
Therefore, once a caregiver is infected with M. pneumoniae,
the likelihood is high that they will transmit the infection to
their patients. These data support infection control strategies
that limit transmission of M. pneumoniae to caregivers. 

We suggest two complementary strategies: limit the num-
ber of wards with which caregivers interact, and reduce the
probability that caregivers become infected through, for exam-
ple, respiratory droplet precautions. This strategy limits the
time and cost of laboratory testing as well as the risks for anti-
biotic use in uninfected persons. The activity of some ancillary
staff (e.g., physical therapists and nutritionists) cannot be lim-
ited to a select number of wards. In these cases, alternative
precautions against transmission of M. pneumoniae are
required. 

We conclude with three caveats. First, the epidemic model
includes all infections, even those that do not result in symp-
toms. Most persons with M. pneumoniae infections have rela-
tively mild disease, only a cough or sore throat or no
symptoms at all (17). When applying the model to the out-
break investigation, we considered only symptomatic carriers.
While including asymptomatic carriers would change the esti-
mates for the rates of transmission, our qualitative recommen-
dations for intervention would remain the same.

Second, for mathematical tractability, our model assumes
random (Poissonian) assignment of caregivers to wards. The
quantitative (but probably not qualitative) results would differ
under different degree distributions. In the future, we hope to
analyze distributions taken from actual health-care institutions,
when available. 

Third, because of the long incubation period of M. pneu-
moniae infection, interventions are often initiated well into the

Figure 8. Distribution of transmission rates and ward sizes in the psy-
chiatric institution.

Figure 9. Simulated spread of Mycobacterium pneumoniae among
patients within a ward.
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outbreak. Since epidemics can last months, and in the psychi-
atric institution at least half of the wards were not affected
until 6 weeks after the first case-patient was diagnosed, we are
optimistic that intervention of the type proposed will have a
positive impact.

The theoretical tools are in place for building community-
specific networks and analyzing the transmission of infectious
diseases on these networks. Our approach enables mathemati-
cal experiments, in which the inputs are interventions—struc-
tural reorganization, cohorting, treatment, and the like—and
the output is predictions about the spread of a disease (or lack
thereof) on the network. This approach can both aid the devel-
opment of general measures and lend insight into specific sce-
narios in which intervention is still possible. 
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