Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 8—August 2009
Research

Bordetella pertussis Strains with Increased Toxin Production Associated with Pertussis Resurgence

Frits R. MooiComments to Author , Inge H.M. van Loo, Marjolein van Gent, Qiushui He, Marieke J. Bart, Kees J. Heuvelman, Sabine C. de Greeff, Dimitri Diavatopoulos, Peter Teunis, Nico Nagelkerke, and Jussi Mertsola
Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (F.R. Mooi, M. van Gent, M.J. Bart, K.J. Heuvelman, S.C. de Greeff, D. Diavatopoulos, P. Teunis); Maastricht University Hospital, Maastricht, the Netherlands (I.H.M. van Loo); National Public Health Institute, Turku, Finland (Q. He); United Arab Emirates University, Al Ain, United Arab Emirates (N. Nagelkerke); University of Turku, Turku (J. Mertsola)

Main Article

Figure 1

Alleles of pertussis toxin promoter (ptxP) observed worldwide. Bases are numbered –173 to +27 relative to the start of transcription (+1). The region to which 6 dimers of BvgA, the global regulator of B. pertussis virulence genes, bind is shaded. The –10 sequence motif and initiation codon are underlined. The DNA region –370 to –174, not shown here, was devoid of polymorphism. Locations of transcriptional signals and BvgA bindings sites are based on Bartoloni et al. (16).

Figure 1. Alleles of pertussis toxin promoter (ptxP) observed worldwide. Bases are numbered –173 to +27 relative to the start of transcription (+1). The region to which 6 dimers of BvgA, the global regulator of B. pertussis virulence genes, bind is shaded. The –10 sequence motif and initiation codon are underlined. The DNA region –370 to –174, not shown here, was devoid of polymorphism. Locations of transcriptional signals and BvgA bindings sites are based on Bartoloni et al. (16).

Main Article

References
  1. Edwards  KM, Decker  MD. Pertussis vaccine. In: Plotkin SA, Orenstein WA, editors. Vaccines. 4th ed. Philadelphia: Saunders; 2004. p. 471–528.
  2. Crowcroft  NS, Stein  C, Duclos  P, Birmingham  M. How best to estimate the global burden of pertussis? Lancet Infect Dis. 2003;3:4138. DOIPubMedGoogle Scholar
  3. de Melker  HE, Schellekens  JF, Neppelenbroek  SE, Mooi  FR, Rumke  HC, Conyn-van Spaendonck  MA. Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis. 2000;6:34857. DOIPubMedGoogle Scholar
  4. Edwards  KM. Overview of pertussis: focus on epidemiology, sources of infection, and long term protection after infant vaccination. Pediatr Infect Dis J. 2005;24(Suppl):S1048. DOIPubMedGoogle Scholar
  5. de Melker  HE, Versteegh  FG, Schellekens  JF, Teunis  PF, Kretzschmar  M. The incidence of Bordetella pertussis infections estimated in the population from a combination of serological surveys. J Infect. 2006;53:10613. DOIPubMedGoogle Scholar
  6. Cherry  JD. The epidemiology of pertussis: a comparison of the epidemiology of the disease pertussis with the epidemiology of Bordetella pertussis infection. Pediatrics. 2005;115:14227. DOIPubMedGoogle Scholar
  7. Halperin  SA. The control of pertussis—2007 and beyond. N Engl J Med. 2007;356:1103. DOIPubMedGoogle Scholar
  8. Mooi  FR, He  Q, Guiso  N. Phylogeny, evolution, and epidemiology of Bordetellae. In: Locht C, editor. Bordetella molecular microbiology, 1st ed. Norfolk (UK): Horizon Bioscience; 2007. p. 17–45.
  9. Mooi  FR, van Oirschot  H, Heuvelman  K, van der Heide  HG, Gaastra  W, Willems  RJ. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun. 1998;66:6705.PubMedGoogle Scholar
  10. Gzyl  A, Augustynowicz  E, Gniadek  G, Rabczenko  D, Dulny  G, Slusarczyk  J. Sequence variation in pertussis S1 subunit toxin and pertussis genes in Bordetella pertussis strains used for the whole-cell pertussis vaccine produced in Poland since 1960: efficiency of the DTwP vaccine-induced immunity against currently circulating B. pertussis isolates. Vaccine. 2004;22:21228. DOIPubMedGoogle Scholar
  11. Fingermann  M, Fernandez  J, Sisti  F, Rodriguez  ME, Gatti  B, Bottero  D, Differences of circulating Bordetella pertussis population in Argentina from the strain used in vaccine production. Vaccine. 2006;24:351321. DOIPubMedGoogle Scholar
  12. Watanabe  M, Nagai  M. Effect of acellular pertussis vaccine against various strains of Bordetella pertussis in a murine model of respiratory infection. J Health Sci. 2002;48:5604. DOIGoogle Scholar
  13. King  AJ, Berbers  G, van Oirschot  HF, Hoogerhout  P, Knipping  K, Mooi  FR. Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology. 2001;147:288595.PubMedGoogle Scholar
  14. Verwey  W, Thiele  E, Sage  D, Suchardt  L. A simplified liquid culture medium for the growth of Haemophilus pertussis. J Bacteriol. 1949;58:12734.
  15. Hijnen  M, He  Q, Schepp  R, van Gageldonk  P, Mertsola  J, Mooi  FR, Antibody responses to defined regions of the Bordetella pertussis virulence factor pertactin. Scand J Infect Dis. 2008;40:94104. DOIPubMedGoogle Scholar
  16. Bartoloni  A, Pizza  M, Bigio  M, Nucci  D, Ashworth  LA, Irons  LI, Mapping of a protective epitope of pertussis toxin by in vitro refolding of recombinant fragments. Bio/Technology. 1988;6:70912. DOIGoogle Scholar
  17. Hewlett  EL, Donato  GM. Bordetella toxins. In: Locht C, editor. Bordetella molecular microbiology. Norfolk (UK): Horizon Bioscience; 2007. p. 97–118.
  18. Stibitz  S. The bvg regulon. In: Locht C, editor. Bordetella molecular microbiology. Norfolk (UK): Horizon Bioscience; 2007. p. 47–67.
  19. van Loo  IH, Heuvelman  KJ, King  AJ, Mooi  FR. Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Clin Microbiol. 2002;40:19942001. DOIPubMedGoogle Scholar
  20. Diavatopoulos  DA, Cummings  CA, Schouls  LM, Brinig  MM, Relman  DA, Mooi  FR. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005;1:e45. DOIPubMedGoogle Scholar
  21. Parkhill  J, Sebaihia  M, Preston  A, Murphy  LD, Thomson  N, Harris  DE, Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica. Nat Genet. 2003;35:3240. DOIPubMedGoogle Scholar
  22. Hallander  H, Advani  A, Riffelmann  M, vonKonig  CHW, Caro  V, Guiso  N, Bordetella pertussis strains circulating in Europe in 1999 to 2004 as determined by pulsed-field gel electrophoresis. J Clin Microbiol. 2007;45:325762. DOIPubMedGoogle Scholar
  23. Elomaa  A, Advani  A, Donnelly  D, Antila  M, Mertsola  J, He  Q, Population dynamics of Bordetella pertussis in Finland and Sweden, neighbouring countries with different vaccination histories. Vaccine. 2007;25:91826. DOIPubMedGoogle Scholar
  24. Carbonetti  NH, Artamonova  GV, Van Rooijen  N, Ayala  VI. Pertussis toxin targets airway macrophages to promote Bordetella pertussis infection of the respiratory tract. Infect Immun. 2007;75:171320. DOIPubMedGoogle Scholar
  25. Kirimanjeswara  GS, Agosto  LM, Kennett  MJ, Bjornstad  ON, Harvill  ET. Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J Clin Invest. 2005;115:3594601. DOIPubMedGoogle Scholar
  26. Mielcarek  N, Riveau  G, Remoue  F, Antoine  R, Capron  A, Locht  C. Homologous and heterologous protection after single intranasal administration of live attenuated recombinant Bordetella pertussis. Nat Biotechnol. 1998;16:4547. DOIPubMedGoogle Scholar
  27. King  AJ, van Gorkom  T, Pennings  JL, van der Heide  HG, He  Q, Diavatopoulos  D, Comparative genomic profiling of Dutch clinical Bordetella pertussis isolates using DNA microarrays: identification of genes absent from epidemic strains. BMC Genomics. 2008;9:311. DOIPubMedGoogle Scholar
  28. Watanabe  M, Nagai  M. Whooping cough due to Bordetella parapertussis: an unresolved problem. Expert Rev Anti Infect Ther. 2004;2:44754. DOIPubMedGoogle Scholar
  29. Pierce  C, Klein  N, Peters  M. Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med. 2000;26:15124. DOIPubMedGoogle Scholar
  30. Advani  A, Gustafsson  L, Carlsson  RM, Donnelly  D, Hallander  HO. Clinical outcome of pertussis in Sweden: association with pulsed-field gel electrophoresis profiles and serotype. APMIS. 2007;115:73642. DOIPubMedGoogle Scholar
  31. Van Buynder  PG, Owen  D, Vurdien  JE, Andrews  NJ, Matthews  RC, Miller  E. Bordetella pertussis surveillance in England and Wales: 1995–7. Epidemiol Infect. 1999;123:40311. DOIPubMedGoogle Scholar
  32. Preziosi  MP, Yam  A, Wassilak  SG, Chabirand  L, Simaga  A, Ndiaye  M, Epidemiology of pertussis in a West African community before and after introduction of a widespread vaccination program. Am J Epidemiol. 2002;155:8916. DOIPubMedGoogle Scholar
  33. Davison  F, Nair  V. Use of Marek’s disease vaccines: could they be driving the virus to increasing virulence? Expert Rev Vaccines. 2005;4:7788. DOIPubMedGoogle Scholar
  34. Best  SM, Kerr  PJ. Coevolution of host and virus: the pathogenesis of virulent and attenuated strains of myxoma virus in resistant and susceptible European rabbits. Virology. 2000;267:3648. DOIPubMedGoogle Scholar
  35. Mackinnon  MJ, Read  AF. Immunity promotes virulence evolution in a malaria model. PLoS Biol. 2004;2:E230. DOIPubMedGoogle Scholar
  36. Gandon  S, Mackinnon  MJ, Nee  S, Read  AF. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001;414:7516. DOIPubMedGoogle Scholar
  37. Taranger  J, Trollfors  B, Bergfors  E, Knutsson  N, Sundh  V, Lagergard  T, Mass vaccination of children with pertussis toxoid – decreased incidence in both vaccinated and nonvaccinated persons. Clin Infect Dis. 2001;33:100410. DOIPubMedGoogle Scholar
  38. Luttinger  P. The epidemiology of pertussi. Am J Dis Child. 1916;12:290315.

Main Article

Page created: December 06, 2010
Page updated: December 06, 2010
Page reviewed: December 06, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external