Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 4, Number 2—June 1998
Perspective

Multidrug-Resistant Mycobacterium tuberculosis: Molecular Perspectives

Ashok RattanComments to Author , Awdhesh KaliaComments to Author , and Nishat Ahmad
Author affiliations: All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India

Main Article

Figure 1

Global incidence of tuberculosis. Of the estimated 8.8 million cases worldwide, more than 40% of the cases are in Southeast Asia; India has approximately 53.3% of those cases. A, Americas; Afr, Africa; WP, Western Pacific; E, Europe; M, Eastern Mediterranean; and SEA, Southeast Asia; Ind, Indonesia; B, Bangladesh; Thai, Thailand; My, Myanmar. *Others include Bhutan, 0.05%; Nepal, 1.2%; Maldives, 0.001%; Sri Lanka, 1%; DPR Korea, 1.2%. (Data from reference 2).

Figure 1. Global incidence of tuberculosis. Of the estimated 8.8 million cases worldwide, more than 40% of the cases are in Southeast Asia; India has approximately 53.3% of those cases. A, Americas; Afr, Africa; WP, Western Pacific; E, Europe; M, Eastern Mediterranean; and SEA, Southeast Asia; Ind, Indonesia; B, Bangladesh; Thai, Thailand; My, Myanmar. *Others include Bhutan, 0.05%; Nepal, 1.2%; Maldives, 0.001%; Sri Lanka, 1%; DPR Korea, 1.2%. (Data from reference 2).

Main Article

References
  1. Bloom  BR, Murray  CJL. Tuberculosis: Commentary on a reemergent killer. Science. 1992;257:105564. DOIPubMedGoogle Scholar
  2. World Health Organization. Bridging the gaps: the world health report. Geneva: The Organization; 1995.
  3. World Health Organization report on TB epidemic. Global TB programme. Geneva: The Organization; 1997.
  4. Barnes  P, Blotch  AB, Davidson  BT, Snyder  DE Jr. Tuberculosis in patients with immuno-deficiency virus infection. N Engl J Med. 1991;324:164450.PubMedGoogle Scholar
  5. Kochi  A, Vareldzis  B, Styblo  K. Multi-Drug resistant tuberculosis and control. Res Microbiol. 1993;144:10410. DOIPubMedGoogle Scholar
  6. Bell  RT. Tuberculosis of the 1990s: the quiet public health threat. Pa Med. 1992;95:245.PubMedGoogle Scholar
  7. Snider  DE Jr, Roper  WL. The new tuberculosis. N Engl J Med. 1992;326:7035.PubMedGoogle Scholar
  8. Freiden  TE, Sterling  T, Pablos-Mendez  A, Kilburn  JO, Cauthen  JO, Dooley  SW. The emergence of drug-resistant tuberculosis in New York city. N Engl J Med. 1993;328:5216. DOIPubMedGoogle Scholar
  9. Nosocomial transmission of multi-drug resistant tuberculosis among human immuno-deficiency virus infected patients—Florida and New York, 1988-1991. MMWR Morb Mortal Wkly Rep. 1991;40:58591.PubMedGoogle Scholar
  10. Dooley  SW, Jarvis  WR, Martone  WJ, Snyder  DE Jr. Multi-Drug resistant tuberculosis [editorial]. Ann Intern Med. 1992;117:2578.PubMedGoogle Scholar
  11. Edlin  BR, Tokers  JI, Greeko  MH, Crawford  JT, Williams  J, Sordillo  EM, An outbreak of multi-drug resistant tuberculosis among hospitalized patients with the Acquired Immuno-Deficiency syndrome. N Engl J Med. 1992;326:151421.PubMedGoogle Scholar
  12. Pearson  ML, Jareb  JA, Freiden  TR, Crawford  JT, Davis  BJ, Dooley  SN, Nosocomial transmission of multi-drug resistant tuberculosis—a risk to patients and health care workers. Ann Intern Med. 1992;117:1916.PubMedGoogle Scholar
  13. Iseman  MD, Sbarbaro  JA. The increasing prevalence of resistance to antituberculosis chemotherapeutic agents: implications for global tuberculosis control. Curr Clin Top Infect Dis. 1992;12:188204.PubMedGoogle Scholar
  14. Cohn  DL, Flavia  B, Raviglione  MC. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD global surveillance project. Clin Infect Dis. 1997;24:S12130.PubMedGoogle Scholar
  15. Initial therapy for tuberculosis in the era of multi-drug resistance: recommendations of the advisory council for the elimination of tuberculosis. MMWR Morb Mortal Wkly Rep. 1993;42(RR-7).
  16. Mitchison  DA. Mechanism of drug action in short-course chemotherapy. Bull Int Union Tuberc. 1985;65:307.
  17. Iseman  MD, Madsen  LA. Drug-resistant tuberculosis. Clin Chest Med. 1989;10:34153.PubMedGoogle Scholar
  18. Heifets  LB, Lindohlm-Levy  PJ. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis populations. Am Rev Respir Dis. 1992;145:12235.PubMedGoogle Scholar
  19. Vareldzis  BP, Grosset  J, de Kantor  I, Crofton  J, Laszlo  A, Felten  M, Drug-resistant tuberculosis: laboratory issues. World Health Organization recommendations. Tuber Lung Dis. 1994;75:17. DOIPubMedGoogle Scholar
  20. Spratt  BG. Resistance to antibiotics mediated by target alterations. Science. 1994;264:38893. DOIPubMedGoogle Scholar
  21. Davis  J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994;264:37582. DOIPubMedGoogle Scholar
  22. Shimao  T. Drug-resistance in tuberculosis control. Tubercle. 1987;68(suppl):515.PubMedGoogle Scholar
  23. Crofton  J. The assessment and treatment of drug-resistance problems in tuberculosis. J Ir Med Assoc. 1970;63:758.PubMedGoogle Scholar
  24. Grange  JM. Drug-resistance and tuberculosis elimination. Bull Int Union Tuberc Lung Dis. 1990;65:57.PubMedGoogle Scholar
  25. Youatt  J. A review of the action of isoniazid. Am Rev Respir Dis. 1969;99:72949.PubMedGoogle Scholar
  26. Shoeb  HA, Bowman  BU Jr, Ottolenghi  AC, Merola  AJ. Peroxidase-mediated oxidation of isoniazid. Antimicrob Agents Chemother. 1985;27:399403.PubMedGoogle Scholar
  27. Maggliozzo  RS, Marcinkeviciene  JA. Evidence for isoniazid oxidation by oxypressors mycobaterial catalase-oxidase. J Am Chem Soc. 1996;118:113034. DOIGoogle Scholar
  28. Middlebrook  G. Isoniazid-resistance and catalase activity of tubercle bacilli. Am Rev Tuberc. 1954;69:4712.PubMedGoogle Scholar
  29. Zhang  Y, Heym  B, Allen  B, Young  D, Cole  S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358:5913. DOIPubMedGoogle Scholar
  30. Zhang  Y, Garbe  T, Young  D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993;8:5214. DOIPubMedGoogle Scholar
  31. Demple  B, Halbrook  J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983;304:466. DOIPubMedGoogle Scholar
  32. Sherman  DR, Sabo  PJ, Hickey  MJ, Arain  TM, Mahairas  GG, Yuan  Y, Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc Natl Acad Sci U S A. 1995;92:66259. DOIPubMedGoogle Scholar
  33. Sherman  DR, Mdluli  K, Hickey  MJ, Arain  TM, Morris  SL, Barry  CE III, Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science. 1996;272:16413. DOIPubMedGoogle Scholar
  34. Chae  HZ, Robinson  K, Leslie  B, Church  GB, Storz  G, Rhee  SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain, alkyl hydro-peroxide reductase and thiolspecific anti-oxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A. 1994;91:701721. DOIPubMedGoogle Scholar
  35. Chae  HZ, Chung  SJ, Rhee  SG. Thioredoxin-dependent-peroxide reductase from yeast. J Biol Chem. 1994;269:2760.
  36. Sreevatsan  S, Pan  X, Zhang  Y, Deretic  V, Muser  JM. Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organims recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother. 1997;41:6006.PubMedGoogle Scholar
  37. Heym  B, Stavropoulos  E, Honore  N, Domenech  P, Saint-Joanis  B, Wilson  TM, Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun. 1997;65:1395401.PubMedGoogle Scholar
  38. Altamarino  M, Marostenmaki  J, Wong  A, Fitzgerald  M, Black  WA, Smith  JA. Mutations in the catalase-peroxidase gene from isoniazid-resistant Mycobacterium tuberculosis isolates. J Infect Dis. 1994;160:11625.
  39. Stoeckle  MY, Guan  L, Riegler  N, Weitzman  I, Kreiswirth  B, Kornblum  J, Catalase-peroxidase gene sequences in isoniazid-sensitive and -resistant strains of Mycobacterium tuberculosis from New York City. J Infect Dis. 1993;168:10635.PubMedGoogle Scholar
  40. Cockerill  FR III, Uhi  JR, Temesgen  Z, Zhang  Y, Stockman  L, Roberts  GD, Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J Infect Dis. 1995;171:2405.PubMedGoogle Scholar
  41. Pretorius  GS, Van Helden  PD, Sergel  F, Eisenach  KD, Victor  TC, Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother. 1995;39:227681.PubMedGoogle Scholar
  42. Heym  B, Alzavi  PM, Honore  N, Cole  ST. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol. 1995;15:23545. DOIPubMedGoogle Scholar
  43. Rouse  DA, Devito  JA, Li  Z, Byer  M, Morris  SL. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol. 1996;22:58392. DOIPubMedGoogle Scholar
  44. Jaber  M, Rattan  A, Kumar  R. Presence of katG gene in isoniazid-resistant strains of Mycobacterium tuberculosis. J Clin Pathol. 1996;49:9457. DOIPubMedGoogle Scholar
  45. Kalia  A, Ahmad  N, Rattan  A. Diagnosis of multi-drug resistant tuberculosis: comparison of traditional, radiometric and molecular methods [abstract]. In: Abstracts of the 20th International Congress of Chemotherapy; 29 Jun-3 Jul 1997; Sydney, Australia. Sydney: International Society of Chemotherapy; 1997. p. 211.
  46. Heym  B, Honore  N, Truffot-Pernot  C, Banerjee  A, Schurra  C, Jacobs  WR Jr, Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994;344:2938. DOIPubMedGoogle Scholar
  47. Kapur  V, Li  LL, Hamrick  MR, Plikaytis  BB, Shinnick  TM, Telenti  A, Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antibiotic resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995;119:1318.PubMedGoogle Scholar
  48. Morris  SL. Bai Gh, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D. Molecular mechanisms of multidrug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis. 1995;171:95460.PubMedGoogle Scholar
  49. Johnsson  K, Froland  WA, Schultz  PG. Overexpression, purification and characterization of the catalase-peroxidase, katG from Mycobacterium tuberculosis. J Biol Chem. 1997;272:283440. DOIPubMedGoogle Scholar
  50. Rouse  DA, Li  Z, Baig  M, Morris  SL. Characterization of the katG and inhA genes of isoniazid resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995;30:24727.
  51. Rosner  JL. Susceptibility of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob Agents Chemother. 1993;37:22513.PubMedGoogle Scholar
  52. Deretic  V, Philipp  W, Dhandyuthapani  S, Mudd  MH, Curcic  R, Garbe  T, Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol. 1995;17:889900. DOIPubMedGoogle Scholar
  53. Wilson  TM, Collins  DM. ahpC, a gene involved in isoniazid resistance of Mycobacterium tuberculosis complex. Mol Microbiol. 1996;19:102534. DOIPubMedGoogle Scholar
  54. Banerjee  A, Dubnau  E, Quemard  A, Balasubramanian  V, Um  KS, Wilson  T, inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994;263:22730. DOIPubMedGoogle Scholar
  55. Bergler  H, Wallner  P, Ebeling  A, Leitinger  B, Fuchshlschler  S, Aschauer  H, Protein EnvM is the NADH-dependent-enoyl-ACP-reductase (Fab1) of Escherichia coli. J Biol Chem. 1994;269:54936.PubMedGoogle Scholar
  56. Cole  ST. Mycobacterium tuberculosis: drug-resistance mechanisms. Trends Microbiol. 1994;2:4115. DOIPubMedGoogle Scholar
  57. Dessen  A, Quemard  A, Blanchard  JS, Jacobs  WR Jr, Sacchettini  JC. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995;267:163841. DOIPubMedGoogle Scholar
  58. Quemard  A, Sacchettini  JC, Dessen  A, Jacobs  WR Jr, Blanchard  JS, Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995;34:823541. DOIPubMedGoogle Scholar
  59. Johnsson  K, King  DS, Schultz  PG. Studies on the mechanism of action of isoniazid and ethionamide in chemotherapy of tuberculosis. J Am Chem Soc. 1995;117:500910. DOIGoogle Scholar
  60. Takayama  K, Schoenes  HK, Armstrong  EL, Boyle  KW. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J Lipid Res. 1975;16:30817.PubMedGoogle Scholar
  61. Davidson  LA, Takayma  K. Isoniazid inhibition of the synthesis of mono-saturated long chain fatty acids in Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1979;16:1045.PubMedGoogle Scholar
  62. Mdluli  K, Sherman  DR, Hickey  MJ, Kreiswirth  BN, Morris  S, Stover  CK, Biochemical and genetic data suggest that inhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J Infect Dis. 1996;174:108590.PubMedGoogle Scholar
  63. Woodley  CL, Kilburn  JO, David  HL, Silcox  VA. Susceptibility of mycobacteria to rifampin. Antimicrob Agents Chemother. 1972;2:2459.PubMedGoogle Scholar
  64. Ovchinnikov  YA, Monastyrskaya  GS, Gubanov  VV, Lipkin  VM, Sverdlov  ED, Kiver  IF, Primary structure of Escherichia coli RNA polymerase nucleotide substitution in the ß-subunit gene of rifampicin resistant rpoB255 mutant. Mol Gen Genet. 1981;84:5368. DOIGoogle Scholar
  65. Levin  ME, Hatfull  GF. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol. 1993;8:27785. DOIPubMedGoogle Scholar
  66. Ovchinnikov  YA, Monastryskaya  GS, Gubanov  VV, Lipkin  VM, Sverdlov  ED, Kiver  IF, The primary structure of Escherichia coli RNA polymerase. Nucleotide sequence of rpoB gene and amino-acid sequence of the ß-subunit. Eur J Biochem. 1981;116:6219. DOIPubMedGoogle Scholar
  67. Jin  D, Gross  C. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that leads to rifampicin resistance. J Mol Biol. 1988;202:4558. DOIPubMedGoogle Scholar
  68. Telenti  A, Imboden  P, Marchesi  F, Lowrie  D, Cole  S, Colston  MJ, . Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341:64750. DOIPubMedGoogle Scholar
  69. Telenti  A, Imboden  P, Marchesi  F, Schidheini  T, Bodmer  T. Direct, automated detection of rifampicin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother. 1993;37:20548.PubMedGoogle Scholar
  70. Williams  DL, Waguespack  C, Eisenach  K, Crawford  JT, Portaels  M, Salfinger  M, Characterization of rifampicin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994;38:23806.PubMedGoogle Scholar
  71. Kapur  V, Li  LL, Iordanescu  S, Hamrick  MR, Wanger  A, Kreisworth  RN, Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase ß-subunit in rifampicin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994;32:10958.PubMedGoogle Scholar
  72. Felmlee  TA, Liu  Q, Whelen  AC, Williams  D, Sommer  SS, Persing  DH. Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol. 1995;33:161723.PubMedGoogle Scholar
  73. Whelen  AC, Felmlee  TA, Hunt  JM, Williams  DL, Roberts  GD, Stockman  L, Direct genotype detection of Mycobacterium tuberculosis rifampicin resistance in clinical specimens by using single-tube heminested PCR. J Clin Microbiol. 1995;33:55661.PubMedGoogle Scholar
  74. De Benhouwer , Lhiang  HZ, Jannes  G, Mijis  W, Machtelinckx  L, Rossau  H, . Rapid detection of rifampin resistance in sputum and biopsy samples from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis. 1995;76:42530. DOIPubMedGoogle Scholar
  75. Cooksey  RC, Morlock  GP, Glickman  S, Crawford  JT. Evaluation of a line probe assay kit for characterization of rpoB mutations in rifampin resistant Mycobacterium tuberculosis isolates from New York City. J Clin Microbiol. 1997;35:12813.PubMedGoogle Scholar
  76. Telenti  A, Persing  DH. Novel strategies for the detection of drug resistance in Mycobacterium tuberculosis. Res Microbiol. 1996;147:739. DOIPubMedGoogle Scholar
  77. Kim  BJ, Kim  SY, Park  B-H, Liu  M-A, Park  I-K, Bai  GH, Mutations in the rpoB gene in Mycobacterium tuberculosis that ineterfere with PCR-single strand conformation polymorphism analysis for rifampin susceptibility testing. J Clin Microbiol. 1997;35:4924.PubMedGoogle Scholar
  78. Thomas  JP, Baughan  CO, Wilkinson  RG, Shephard  RG. A new synthetic compound with anti-tuberculous activity in mice: ethambutol (dextro-2,2'-[ethylenediimino]-di-1-butonol). Am Rev Respir Dis. 1961;83:8913.PubMedGoogle Scholar
  79. Masur  H. Recommendations on prophylaxis and therapy for disseminated Mycobacterium avium complex disease in patients infected with HIV virus. N Engl J Med. 1993;329:82833. DOIPubMedGoogle Scholar
  80. Rastoggi  N, Goh  KS. Action of 1-isonicotinyl-2-palmitoyl hydrazine against the Mycobacterium avium complex and enhancement of its activity by m-flurophenyl alanine. Antimicrob Agents Chemother. 1990;34:20614.PubMedGoogle Scholar
  81. Rastoggi  N, Goh  KS, Labrausse  V. Activity of clathiromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by etham-butol. Antimicrob Agents Chemother. 1992;36:28436.PubMedGoogle Scholar
  82. Takayama  K, Armstrong  EL, Kunugi  KA, Kilburn  JO. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1979;16:2402.PubMedGoogle Scholar
  83. Kilburn  JO, Takayama  K. Effects of ethambutol on accumulation and secretion of trehalose mycolates and free mycolic acid in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1981;20:4014.PubMedGoogle Scholar
  84. Takayama  K, Kilburn  JO. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1989;33:14939.PubMedGoogle Scholar
  85. Wolucka  BA, McNeil  MR, de Hoffman  E, Chojnaki  T, Brennan  PJ. Recognition of the lipid intermediate for arabinogalactan/arabinomanan biosynthesis and its relation to the mode of action ethambutol on mycobacteria. J Biol Chem. 1994;269:2332835.PubMedGoogle Scholar
  86. Belanger  AE, Besra  GS, Ford  ME, Mikusova  K, Belisle  JT, Brennan  PJ, The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A. 1996;93:1191924. DOIPubMedGoogle Scholar
  87. Telenti  A, Philipp  WJ, Sreevatsan  S, Bernasconi  C, Stockbauer  KE, Weites  B, The emb operon, a gene cluster of Mycobacetrium tuberculosis involved in resistance to ethambutol. Nat Med. 1997;3:56770. DOIPubMedGoogle Scholar
  88. Sreevatsan  S, Stockbauer  KE, Pan  X, Kreisworth  BM, Moghazeh  SL, Jacobs  WR Jr, Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother. 1997;41:167781.PubMedGoogle Scholar
  89. Konno  K, Nagayama  H, Oka  S. Nicotinamidase in mycobacteria: a method for distinguishing bovine type tubercle bacilli from other mycobacteria. Nature. 1959;184:17434. DOIPubMedGoogle Scholar
  90. Konno  K, Feldman  FM, McDermot  W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967;95:4617.PubMedGoogle Scholar
  91. Mackaness  GB. The intracellular activation of pyrazinamide and nicotinamide. Am Rev Tuberc. 1953;74:71828.
  92. Scorpio  A, Zhang  Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996;2:6627. DOIPubMedGoogle Scholar
  93. Sreevatsan  S, Pan  X, Zhang  Y, Kreisworth  BN, Musser  JM. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother. 1997;41:63640.PubMedGoogle Scholar
  94. Scorpio  A, Lindholm-Levy  P, Heifets  L, Gilman  R, Siddiqi  S, Cynamon  M, Characterization of pncA mutations in pyrazinamide resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1997;41:5402.PubMedGoogle Scholar
  95. Hewlett  D, Horn  DL, Alfalfa  C. Drug resistant tuberculosis: inconsistent results of pyrazinamide susceptibility testing. JAMA. 1995;273:9167. DOIPubMedGoogle Scholar
  96. Scorpio  A, Collins  D, Whipple  D, Cave  D, Bates  J, Zhang  Y. Rapid differentiation of bovine and human tubercule bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol. 1997;35:10610.PubMedGoogle Scholar
  97. Gay  JD, de Young  DR, Roberts  GD. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M chelonei, M. forfuitre, and M. kansasii. Antimicrob Agents Chemother. 1984;26:946.PubMedGoogle Scholar
  98. Gellert  M, Mizuuchi  K, O'Dea  MH, Nash  HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 1976;73:38725. DOIPubMedGoogle Scholar
  99. Kirchausen  T, Wang  JC, Harrison  SC. Purification of the subunits of Escherichia coli DNA gyrase and reconstitution of enzyme activity. Proc Natl Acad Sci U S A. 1978;75:17737. DOIPubMedGoogle Scholar
  100. Gellert  M, O'Dea  MH, Itoh  T, Tomizava  J. Novobiocin and coumeromycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci U S A. 1976;73:44748. DOIPubMedGoogle Scholar
  101. Sugino  A, Peebles  CL, Kreuzer  KN, Cozzarelli  NR. Mechanism of action of Nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking closing enzyme. Proc Natl Acad Sci U S A. 1977;74:466771. DOIGoogle Scholar
  102. Kirkegaard  K, Wand  JC. Mapping the topography of DNA wrapped around gyrase by nucleolytic and chemical probing of complexes of unique DNA sequences. Cell. 1981;23:7219. DOIPubMedGoogle Scholar
  103. Shen  LL, Pernet  AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is the DNA gyrase. Proc Natl Acad Sci U S A. 1985;82:30711. DOIPubMedGoogle Scholar
  104. Wilmont  CJR, Critchlow  SE, Eperon  IC, Maxwell  A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol. 1994;242:35163. DOIPubMedGoogle Scholar
  105. Lewis  RJ, Tsai  FTF, Wigley  DB. Molecular mechanism of drug inhibition by DNA gyrase. Bioessays. 1996;18:66171. DOIPubMedGoogle Scholar
  106. Takiff  HE, Salazar  L, Guerrero  C, Philipp  W, Huang  WM, Kreisworth  B, Cloning and nucleotide sequencing of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistant mutations. Antimicrob Agents Chemother. 1994;38:77380.PubMedGoogle Scholar
  107. Rees  RJ, Maxwell  A. DNA gyrase. Structure and function. Crit Rev Biochem Mol Biol. 1991;26:33575. DOIPubMedGoogle Scholar
  108. Revel  V, Cambau  E, Jarlier  E, Sougakoff  W. Characterization of mutations in Mycobacterium smegmatis involved in resistance to fluoroquinolones. Antimicrob Agents Chemother. 1994;38:19916.PubMedGoogle Scholar
  109. Inderlied  CB. Antimycobacterial agents: in vitro susceptibility testing, spectrums of activity, mechanisms of action and resistance, and assays for activity in biological fluids. In: Lorain V, editor. Antibiotics in laboratory medicine. Baltimore: Williams and Wilkins, Baltimore; 1991. p. 134-197.
  110. Benveinste  R, Davies  J. Mechanism of antibiotic resistance in bacteria. Annu Rev Biochem. 1973;42:471506. DOIPubMedGoogle Scholar
  111. Davies  J, Wright  JD. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 1997;5:2349. DOIPubMedGoogle Scholar
  112. Douglass  J, Steyn  LM. A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J Infect Dis. 1993;167:15056.PubMedGoogle Scholar
  113. Finken  M, Kirschner  P, Meier  A, Wrede  A, Bottger  EC. Molecular basis of streptomycin-resistance in Mycobacterium tuberculosis: alteration of the ribosomal protein S12 gene and point mutations within a functional 16S rRNA pseudoknot. Mol Microbiol. 1993;9:123946. DOIPubMedGoogle Scholar
  114. Meier  A, Kirschner  P, Bange  FC, Vogel  U, Botger  EC. Genetic alteration in streptomycin-resistance in Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother. 1994;38:22833.PubMedGoogle Scholar
  115. Nair  J, Rouse  DA, Bai  GH, Morris  SL. The rpsL gene and streptomycin resistance in single and multi-drug resistant strains of Mycobacterium tuberculosis. Mol Microbiol. 1993;10:5214. DOIPubMedGoogle Scholar
  116. Honore  N, Cole  ST. Streptomycin resistance in myco-bacteria. Antimicrob Agents Chemother. 1994;38:23842.PubMedGoogle Scholar
  117. Woes  CR, Gutell  RR. Evidence for several higher order structural elements in ribosomal rRNA. Proc Natl Acad Sci U S A. 1989;86:311922. DOIPubMedGoogle Scholar
  118. Shaila  MS, Gopinathan  RP, Ramakrishnan  T. Protein synthesis Mycobacterium tuberculosis H37Rv and the effect of streptomycin in streptomycin susceptible and resistant strains. Antimicrob Agents Chemother. 1973;4:20513.PubMedGoogle Scholar
  119. Meier  A, Sander  P, Schaper  KJ, Scholz  M, Bottger  EC. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1996;40:24524.PubMedGoogle Scholar
  120. Orita  M, Suzuki  Y, Sekiya  T, Hayashi  K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989;5:8759. DOIGoogle Scholar

Main Article

Page created: December 14, 2010
Page updated: December 14, 2010
Page reviewed: December 14, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external