Hepatitis E virus (HEV), a causative agent of human hepatitis E, is a single-stranded positive-sense RNA virus recently classified as the sole member of the genus Hepeviridae in the family Hepeviridae (1,2). HEV is transmitted primarily by the fecal-oral route through contaminated drinking water. However, recent studies have demonstrated that various animal species have serum antibodies to HEV, suggesting that hepatitis E is a zoonotic disease (3). In Japan, 4 hepatitis E cases have been linked directly to eating raw deer meat (4), and several cases of acute hepatitis E have been epidemiologically linked to eating undercooked pork liver or wild boar meat (5,6). These cases provide convincing evidence of zoonotic food-borne transmission. We report direct evidence of HEV transmission from a wild boar to a human.

The Study
A 57-year-old woman came to Iizuka Hospital on March 12, 2005, with malaise and anorexia. Although she was a healthy hepatitis B virus carrier and negative for serologic markers of hepatitis A and C, testing upon admission showed elevated levels of liver enzymes (alanine aminotransferase 752 IU/L, aspartate aminotransferase 507 IU/L, and γ-glutamyl transpeptidase 225U/L). A serum sample collected on March 16 was positive for both immunoglobulin M (IgM) and IgG antibodies to HEV, suggesting that hepatitis E is a zoonotic disease (3). In Japan, 4 hepatitis E cases have been linked directly to eating raw deer meat (4), and several cases of acute hepatitis E have been epidemiologically linked to eating undercooked pork liver or wild boar meat (5,6). These cases provide convincing evidence of zoonotic food-borne HEV transmission. We report direct evidence of HEV transmission from a wild boar to a human.

We investigated a case of hepatitis E acquired after persons ate wild boar meat. Genotype 3 hepatitis E virus (HEV) RNA was detected in both patient serum and wild boar meat. These findings provided direct evidence of zoonotic foodborne transmission of HEV from a wild boar to a human.
amplified as overlapping segments, nucleotide sequences were determined, and phylogenetic analysis was carried out with avian HEV as an outgroup. Avian HEV is a causative agent of chicken hepatitis-splenomegaly syndrome (8). Two sequences, 1 from the patient (DQ079629) and the other from meat 3 (DQ079630), were classified into genotype 3 (Figure). Only 1 nt difference was observed in the 1,980 nt of the entire ORF2; the nucleotide sequence identity was 99.95%. The difference was not accompanied by any amino acid changes. These data demonstrated that HEV infection was transmitted from the wild boar meat to the patient on January 19, 2005.

Conclusions
Currently, deer, pig, and wild boar are suspected sources of foodborne zoonotic transmission of HEV in Japan, and genotypes 3 and 4 of HEV are believed to be indigenous (4–6,9,10). Direct evidence for transmission of genotype 3 HEV from animals to humans was observed in acute hepatitis in 4 persons who had eaten uncooked deer meat that contained 10^7 copies of HEV RNA (4). However, the rare finding of HEV antibody-positive deer in Japan suggest that deer are not the major zoonotic reservoir of HEV in this country (11). In contrast, high antibody-positive rates in domestic pig and wild boar, including HEV genotypes 3 and 4, have been frequently detected, suggesting that persons who eat uncooked meat are at risk for infection with HEV (12,13). This report is the first to provide direct evidence of zoonotic foodborne genotype 3 HEV transmission from wild boar to a human.

Acknowledgments
We thank Tomoko Mizoguchi for secretarial assistance.

This study was supported in part by grants on emerging and reemerging infectious diseases, hepatitis, and food safety from the Ministry of Health, Labor and Welfare, Japan.

Dr Li is a senior researcher at National Institute of Infectious Diseases in Tokyo, Japan. His research focuses on epidemiology, expression of viral proteins, and the three-dimensional structure of hepatitis E virus.

References

Figure. Phylogenetic tree of hepatitis E virus (HEV) reconstructed with avian HEV as an outgroup. Nucleotide sequences of the entire open reading frame 2 were analyzed by the neighbor-joining method. The bootstrap values correspond to 1,000 replications. The 2 nucleotide sequences characterized in this study are shown in **bold**. The horizontal scale bar at the top left indicates nucleotide substitutions per site.

Address for correspondence: Tatsuo Miyamura, Department of Virology II, National Institute of Infectious Diseases. 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; fax: 81-42-565-4279; email: tmiyam@nih.go.jp