BORSAs initially described non-heteroresistant strains of *S. aureus* with oxacillin MIC ≤ 2 mg/L, which produce ample β-lactamases and are rendered fully susceptible to PRP by β-lactamase-inhibitors (4,6). Subsequent BORSAs described have had higher oxacillin MICs (4–8 mg/L) (4). The proportion of BORSAs among clinical isolates of *S. aureus* varies (1.4%–12.5%) but is usually > 5% (4,10). A BORSA infection outbreak among dermatology patients with severe skin diseases has also been reported (10). Postulated resistance mechanisms include overproduction of conventional penicillins, production of an inducible, plasmid-mediated, membrane-bound methicillinase, and in some cases, point mutations of penicillin-binding-proteins (4). The clinical importance of BORSAs is unknown since early clinical/animal data suggest treatment efficacy of PRP (against strains with MIC ≤ 2 mg/L) (4,6,9). Whether BORSAs with higher oxacillin MICs (4–8 mg/L) will respond equally well to PRP is less clear. Further studies into the treatment of BORSAs, including pharmacokinetic considerations, are needed (4). However, high-dose β-lactam/β-lactamase inhibitor combinations (e.g., ampicillin/sulbactam), as shown in animal models, are at least as effective as PRP (9). In conclusion, our report suggests that mecA (or PBP2a) detection may help manage serious, community-acquired, non-multidrug-resistant MRSA infections because of the potential confusion between BORSAs and CA-MRSAs.

Lee Nelson,* Clive S. Cockram,* Grace Lui,* Rebecca Lam,* Edman Lam,* Raymond Lai,* and Margaret Ip*

*Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China

References

Rickettsia massiliae Human Isolation

To the Editor: The number of new rickettsial species that cause diseases in humans is rapidly increasing (1). Moreover, many of the species first described in ticks have been recently shown to be pathogenic. Of the 10 species or subspecies found to be pathogens after 1984, a total of 7 were first isolated from ticks (2). We report the first isolation of *Rickettsia massiliae* from a patient. The bacterium was isolated in Sicily in 1985 and identified in 2005.

A 45-year-old man was hospitalized in Palermo, Italy, on June 6, 1985, for fever and a rash. He had been febrile since May 25 and did not respond to antimicrobial drug treatment using cefamezin, a first-generation cephalosporin. On examination, he had a necrotic eschar on his right ankle, a maculopapular rash on his palms and soles (online Appendix Figure 1, available at http://www.cdc.gov/ncidod/EID/vol12no01/05-0850- G1.htm), and slight hepatomegaly. Leukocyte count was normal; he received tetracyclines for 13 days and fully recovered. He seroconverted (from 0 to 1:80 between day 11 and day 24) by indirect immunofluorescence to *Rickettsia conorii* (*R. conorii* spot, bioMérieux, Marcy l’Etoile, France).

Four milliliters of heparinized blood sampled before treatment were inoculated in a 25-cm² flask containing Vero cells and incubated at 33°C in a CO₂ incubator (1). Direct immunofluorescence test on a sample of the patient’s serum was positive 7 days later. The strain was stored for 20 years and tested in 2005 at the Unité des Rickettsies for identification, and *R. massiliae* was identified. DNA was extracted from the cell culture supernatant and used as template in 2 previously described polymerase
chain reaction (PCR) assays that targeted a portion of the rickettsial
ompA gene as well as a portion of the rickettsial gltA gene (3,4).
Amplification products of the expected size were obtained from this
extract but from no concurrently processed control materials, including
3 negative controls. DNA sequencing of the positive PCR products
gave 100% identity with R. massiliae for ompA (GenBank accession
no. RBU43792) and 99.9% homology for gltA (GenBank accession no.
RSU 59720).
R. massiliae was first isolated from Rhipicephalus ticks in Marseilles (5).
It is transmitted transovarially in Rhipicephalus turanicus (2). R.
massiliae is commonly found in Rhipicephalus sanguineus or R.
turanicus in France, Greece, Spain (identified as Bar 29) (6), Portugal,
Switzerland, Sicily (D. Raoult, unpub. data), Central Africa, and Mali (2). R.
massiliae may be commonly associated with these ticks, which are distrib-
uted worldwide.
R. massiliae is grouped phylogenetically with Rickettsia rhipicephali and
Rickettsia aeschlimannii (online Appendix Figure 2, available at http://www.cdc.gov/ncidod/EID/vol1 2no01/05-0850-G2.htm). Bacteria
from this group have a natural resistance to rifampin that is associated
with an rpoB sequence that is different from that of other rickettsiae. This
isolate was not tested for antimicrobial drug susceptibility (7). Rifampin
resistance leads us to believe that this isolate may cause a Mediterranean
spotted fever–like disease that was described in children in Spain (7,8).
Serologic findings were recently reported that showed some patients in
Barcelona, Spain, with reactions that indicate R. massiliae (B29 strain)
rather than R. conorii (6). However, serologic reactions are only presum-
tive; isolation from a patient is the required to initially describe a new
disease (9).

This Sicilian index case shows that R. massiliae is a human pathogen. It
contraindicates using rifampin to treat Mediterranean spotted fever in areas
where R. massiliae is endemic, as it cannot as yet be differentiated from R.
conorii infection. R. massiliae is a new example of a strain identified in ticks
for several years before its first isolation from a human patient (10). The
longest delay was observed for Rickettsia parkeri, which was isolated
from ticks in 1939 but not from a patient until 2004. Many authors
labeled R. parkeri a nonpathogenic rickettsia during this time (1). In
the present case, the human isolate was obtained before the tick isolate
but was not further identified. When this strain was isolated, R. conorii
was the sole Rickettsia sp. found in ticks in southern Europe. Moreover,
only 1 tickborne pathogenic Rickettsia sp. was believed to circulate in a single
area. Since that time, several tickborne rickettsial diseases have been shown
to exist in the same area, which prompted us to retrospectively identify
this strain. The patient was reexam-
ined in May 2005, after this identification.
He is healthy and has no remaining
antibodies against Rickettsia spp.

Giustina Vitale,*
Serafino Mansueto,*
Jean-Marc Rolain,†
and Didier Raoult†

*Azienza Ospedaliera Universitaria
Policlinico "P. Giaccone," Palermo, Italy;
†Université de la Méditerranée,
Marseille, France

References
1. Raoult D, Roux V. Rickettsioses as para-
digms of new or emerging infectious dis-
ases. Clin Microbiol Rev. 1997;10:
694–719.
2. Matsumoto K, Ogawa M, Brouqui P, Raoult
D, Parola P. Transmission of Rickettsia
massiliae in the tick, Rhipicephalus turani-
3. Roux V, Fournier PE, Raoult D. Differentiation
of spotted fever group rickettsiae by
sequencing and analysis of restriction fragment length polymorphism
of PCR amplified DNA of the gene en-
coding the protein rOmpA. J Clin Microbiol.
4. Roux V, Rydkina E, Erementsa M, Raoult
D. Citrate synthase gene comparison, a
new tool for phylogenetic analysis, and its
application for the rickettsiae. Int J Syst
5. Beati L, Raoult L. Rickettsia massiliae
sp.nov., a new spotted fever group rick-
6. Cardenosa N, Segura F, Raoult D.
Serosurvey among Mediterranean spotted
fever patients of a new spotted fever group
rickettsial strain (Bar29). Eur J Epidemiol.
7. Drancourt M, Raoult D. Characterization of
mutations in the rpoB gene in naturally
rifampin-resistant Rickettsia species.
8. Bella F, Espejo-Arenas E, Uriz S, Serrano
JA, Alegre MD, Tort J. Randomized trial of
day-five rifampin versus one-day doxycy-
cline therapy for Mediterranean spotted
9. Parola P, Paddock CD, Raoult D. Tick-
borne rickettsioses around the world:
emerging diseases challenging old con-
10. Paddock CD, Sumner JW, Comer JA, Zaki
SR, Goldsmith CS, Goddard J, et al.
Rickettsia parkeri: a newly recognized
cause of spotted fever rickettsiosis in the

Address for correspondence: Didier Raoult,
Unité des Rickettsies, CNRS UMR 6020,
Faculté de Médecine, Université de la Méditerranée,
27 Bd Jean Moulin, 13385
Marseille CEDEX 05, France; fax: 33-4-91-
38-77-72; email: didier.raoult@medecine.
univ-mrs.fr

Instructions for Emerging Infectious Diseases Authors

Letters. Letters commenting on recent articles as well as letters reporting cases, outbreaks,
or original research are welcome. Letters commenting on articles should contain no more than
300 words and 5 references; they are more likely to be published if submitted within 4 weeks
of the original article’s publication. Letters reporting cases, outbreaks, or original research
should contain no more than 800 words and 10 references. They may have 1 figure or table
and should not be divided into sections. All letters should contain material not previously pub-
lished and include a word count.

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 1, January 2006 175