Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 12—December 2006
Research

Evaluating Detection of an Inhalational Anthrax Outbreak

David L. Buckeridge*Comments to Author , Douglas K. Owens†‡, Paul Switzer‡, John Frank§, and Mark A. Musen‡
Author affiliations: *McGill University, Montreal, Quebec, Canada; †Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; ‡Stanford University, Stanford, California, USA; §University of Toronto, Toronto, Ontario, Canada

Main Article

Table 1

Sampling intervals for parameter values in the simulation model*

Parameter Parameter value intervals Probability distribution Source†
Disease model
Incubation duration, d; median (5, 9) (9, 11) (11, 15) Log normal (2,21,22)
Incubation duration, dispersion (1.5, 1.9) (1.9, 2.1) (2.1, 2.5) Log normal (2,21,22)
Prodromal duration, d; median (1.5, 2.3) (2.3 ,2.7) (2.7, 3.5) Log normal (2,22)
Prodromal duration, dispersion (1.2, 1.4) (1.4, 1.5) (1.5, 1.7) Log normal (2,22)
Healthcare use
Probability of visit, prodromal state (0.05, 0.25) (0.25, 0.35) (0.35, 0.55) Bernoulli (23,24)
Probability of visit, fulminant state (0.7, 0.9) (0.9, 0.95) (0.95, 1) Bernoulli Estimate
Probability of respiratory syndrome, prodromal state (0.5, 0.7) (0.7, 0.8) (0. 8,1) Bernoulli (25,26)
Blood culture test, prodromal state (0.001, 0.01) (0.01, 0.015) (0.015, 0.025) Bernoulli (28)
Blood culture test, fulminant state (0.7, 0.9) (0.9, 0.95) (0.95, 1) Bernoulli Estimate
Sensitivity of blood culture (0.5, 0.8) (0.8, 0.9) (0.9, 1) Bernoulli (27)
Time until blood culture growth, d (0.4, 0.8) (0.8, 1.0) (1.0, 1.4) Exponential (30)
Probability of isolation given growth (0.5, 0.8) (0.8, 0.9) (0.9, 1) Bernoulli (29)
Time until blood culture isolation, d (0.5, 0.6) (0.6, 0.9) (0.9, 1.5) Exponential (25)

*Using a Latin hypercube strategy, a value for each parameter was sampled by randomly selecting 1 of the 3 intervals for the parameter and randomly sampling a value on the selected interval. The sampled values parameterize probability distributions, which are sampled for the simulation model.
†References that support the parameter value intervals.

*Using a Latin hypercube strategy, a value for each parameter was sampled by randomly selecting 1 of the 3 intervals for the parameter and randomly sampling a value on the selected interval. The sampled values parameterize probability distributions, which are sampled for the simulation model.
†References that support the parameter value intervals.

*Using a Latin hypercube strategy, a value for each parameter was sampled by randomly selecting 1 of the 3 intervals for the parameter and randomly sampling a value on the selected interval. The sampled values parameterize probability distributions, which are sampled for the simulation model.
†References that support the parameter value intervals.

Main Article

References
  1. Kaufmann  AF, Meltzer  MI, Schmid  GP. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis. 1997;3:8394. DOIPubMedGoogle Scholar
  2. Wein  LM, Craft  DL, Kaplan  EH. Emergency response to an anthrax attack. Proc Natl Acad Sci U S A. 2003;100:434651. DOIPubMedGoogle Scholar
  3. Smolinski  M, Hamburg  ML. Lederberg J, editors. Microbial threats to health: emergence, detection, and response. Washington: National Academy Press; 2003.
  4. Loonsk  JW. BioSense: a national initiative for early detection and quantification of public health emergencies. MMWR Morb Mortal Wkly Rep. 2004;53(Suppl):535.PubMedGoogle Scholar
  5. United States Government Accountability Office. Information technology. Federal agencies face challenges in implementing initiatives to improve public health infrastructure. Volume GAO-05–308. Washington: The Office; 2005.
  6. Buehler  JW, Berkelman  RL, Hartley  DM, Peters  CJ. Syndromic surveillance and bioterrorism-related epidemics. Emerg Infect Dis. 2003;9:1197204.PubMedGoogle Scholar
  7. Lombardo  J, Burkom  H, Elbert  E, Magruder  S, Lewis  SH, Loschen  W, A systems overview of the electronic surveillance system for the early notification of community-based epidemics (ESSENCE II). J Urban Health. 2003;80(Suppl 1):i3242.PubMedGoogle Scholar
  8. Wagner  MM, Robinson  JM, Tsui  F-C, Espino  JU, Hogan  WR. Design of a national retail data monitor for public health surveillance. J Am Med Inform Assoc. 2003;10:40918. DOIPubMedGoogle Scholar
  9. Yih  WK, Caldwell  B, Harmon  R, Kleinman  K, Lazarus  R, Nelson  A, National Bioterrorism Syndromic Surveillance Demonstration Program. MMWR Morb Mortal Wkly Rep. 2004;53(Suppl):439.PubMedGoogle Scholar
  10. Bravata  DM, McDonald  KM, Smith  WM, Rydzak  C, Szeto  H, Buckeridge  DL, Systematic review: surveillance systems for early detection of bioterrorism-related diseases. Ann Intern Med. 2004;140:91022.PubMedGoogle Scholar
  11. Buehler  JW, Hopkins  RS, Overhage  JM, Sosin  DM, Tong  V. Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group. MMWR Recomm Rep. 2004;53:111.PubMedGoogle Scholar
  12. Nordin  JD, Goodman  M, Kuldorff  M, Ritzwoller  DP, Abrams  AM, Kleinman  K, Simulated anthrax attacks and syndromic surveillance. Emerg Infect Dis. 2005;11:13948.PubMedGoogle Scholar
  13. Reis  BY, Pagano  M, Mandl  KD. Using temporal context to improve biosurveillance. Proc Natl Acad Sci U S A. 2003;100:19615. DOIPubMedGoogle Scholar
  14. Stoto  M, Schonlau  M, Mariano  L. Syndromic surveillance: is it worth the effort? Chance. 2004;17:1924.
  15. McKay  M, Beckman  R, Conover  W. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979;21:23945. DOIGoogle Scholar
  16. Buckeridge  DL. A method for evaluating outbreak detection in public health surveillance systems that use adminstrative data. [Doctoral dissertation]. Stanford (CA): Stanford University; 2005.
  17. Buckeridge  DL, Burkom  H, Moore  A, Pavlin  J, Cutchis  P, Hogan  W. Evaluation of syndromic surveillance systems: design of an epidemic simulation model. MMWR Morb Mortal Wkly Rep. 2004;53(Suppl):13743.PubMedGoogle Scholar
  18. Buckeridge  DL, Switzer  P, Owens  D, Siegrist  D, Pavlin  J, Musen  M. An evaluation model for syndromic surveillance: assessing the performance of a temporal algorithm. MMWR Morb Mortal Wkly Rep. 2005;54(Suppl):10915.PubMedGoogle Scholar
  19. Defense Threat Reduction Agency. The HPAC user's guide. Hazard prediction and assessment capability, version 4.0. Fort Belvior (VA): The Agency; 2001.
  20. Glassman  HN. Industrial inhalation anthrax. [Discussion] [PMID 16350199]. Bacteriol Rev. 1965;30:6579.
  21. Brookmeyer  R, Blades  N, Hugh-Jones  M, Henderson  DA. The statistical analysis of truncated data: application to the Sverdlovsk anthrax outbreak. Biostatistics. 2001;2:23347. DOIPubMedGoogle Scholar
  22. Webb  GF, Blaser  MJ. Mailborne transmission of anthrax: modeling and implications. Proc Natl Acad Sci U S A. 2002;99:702732. DOIPubMedGoogle Scholar
  23. McIsaac  WJ, Levine  N, Goel  V. Visits by adults to family physicians for the common cold. J Fam Pract. 1998;47:3669.PubMedGoogle Scholar
  24. Metzger  KB, Hajat  A, Crawford  M, Mostashari  F. How many illnesses does one emergency department visit represent? Using a population-based telephone survey to estimate the syndromic multiplier. MMWR Morb Mortal Wkly Rep. 2004;53(Suppl):10611.PubMedGoogle Scholar
  25. Inglesby  TV, O'Toole  T, Henderson  DA, Bartlett  JG, Ascher  MS, Eitzen  E, Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA. 2002;287:223652. DOIPubMedGoogle Scholar
  26. Jernigan  JA, Stephens  DS, Ashford  DA, Omenaca  C, Topiel  MS, Galbraith  M, Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis. 2001;7:93344. DOIPubMedGoogle Scholar
  27. Reimer  LG, Wilson  ML, Weinstein  MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev. 1997;10:44465.PubMedGoogle Scholar
  28. National Center for Health Statistics. Public use data tapes: National Ambulatory Medical Care Survey 2003. Hyattsville (MD): The Center; 2003.
  29. Begier  EM, Barrett  N, Mshar  P, Johnson  D, Hadler  J; Connecticut Bioterrorism Field Epidemiology Response Team. Gram-positive rod surveillance for early anthrax detection. Emerg Infect Dis. 2005;11:14836.PubMedGoogle Scholar
  30. Beekmann  SE, Diekema  DJ, Chapin  KC, Doern  GV. Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol. 2003;41:311925. DOIPubMedGoogle Scholar
  31. Box  GEP, Jenkins  GM. Time series analysis, forecasting and control. Englewood Cliffs (NJ): Prentice Hall; 1976.
  32. Page  E. Continuous inspection schemes. Biometrika. 1954;41:10015.
  33. Tengelsen  L, Hudson  R, Barnes  S, Hahn  C. Coordinated response to reports of possible anthrax contamination, Idaho, 2001. Emerg Infect Dis. 2002;8:10935.PubMedGoogle Scholar
  34. Pavlin  JA. Investigation of disease outbreaks detected by "syndromic" surveillance systems. J Urban Health. 2003;80(Suppl 1):i10714.PubMedGoogle Scholar
  35. Heffernan  R, Mostashari  F, Das  D, Karpati  A, Kuldorff  M, Weiss  D. Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004;10:85864.PubMedGoogle Scholar
  36. Marx  MA, Rodriguez  CV, Greenko  J, Das  D, Heffernan  R, Karpati  AM, Diarrheal illness detected through syndromic surveillance after a massive power outage: New York City, August 2003. Am J Public Health. 2006;96:54753. DOIPubMedGoogle Scholar
  37. Miller  B, Kassenborg  H, Dunsmuir  W, Griffith  J, Hadidi  M, Nordin  JD, Syndromic surveillance for influenzalike illness in ambulatory care network. Emerg Infect Dis. 2004;10:180611.PubMedGoogle Scholar

Main Article

Page created: October 04, 2011
Page updated: October 04, 2011
Page reviewed: October 04, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external