Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 12—December 2006
Research

Distinct Transmission Cycles of Leishmania tropica in 2 Adjacent Foci, Northern Israel

Milena Svobodova*, Jan Votypka*, Jitka Peckova*, Vít Dvorak*, Abedelmajeed Nasereddin†, Gad Baneth†, Julia Sztern†, Vasiliy Kravchenko†, Amnon Orr‡, David Meir§, Lionel F. Schnur†, Petr Volf*, and Alon Warburg†Comments to Author 
Author affiliations: *Charles University, Prague, Czech Republic; †The Hebrew University of Jerusalem, Jerusalem, Israel; ‡Tiberias Veterinary Center, Tiberias, Israel; §Nature and National Parks Protection Authority, Jerusalem, Israel

Main Article

Table 3

Characterization of Leishmania tropica isolates from the Galilee foci, northern Israel*

Focus/ source Monoclonal antibody specificity
Excreted factor serotype
L. major T1 L. major/L. tropica T3 L. tropica T11
Northern
  Phlebotomus arabicus 5+ 5+ ± A4
  Girl with CL† 4+ 5+ A4
  Rock hyrax 5+ 5+ ± A4
Southern
  P. sergenti 4+ 3+ A9B2
  Man with CL† 2+ 4+ A9B2
Reference strains
  L. major 5+ 5+ A1
  L. tropica ± 3+ 3+ A9

*Characterization was performed by using excreted factor serotyping (23) and species-specific monoclonal antibodies (14). CL, cutaneous leishmaniasis. Values indicate relative intensity of fluorescence under UV light. L. tropica isolates from the northern focus were antigenically similar to L. major and distinct from other L. tropica strains.
†Specimens were isolated by skin scraping for diagnostic purposes at the Department of Dermatology at Hadassah Hospital, Jerusalem.

*Characterization was performed by using excreted factor serotyping (23) and species-specific monoclonal antibodies (14). CL, cutaneous leishmaniasis. Values indicate relative intensity of fluorescence under UV light. L. tropica isolates from the northern focus were antigenically similar to L. major and distinct from other L. tropica strains.
†Specimens were isolated by skin scraping for diagnostic purposes at the Department of Dermatology at Hadassah Hospital, Jerusalem.

*Characterization was performed by using excreted factor serotyping (23) and species-specific monoclonal antibodies (14). CL, cutaneous leishmaniasis. Values indicate relative intensity of fluorescence under UV light. L. tropica isolates from the northern focus were antigenically similar to L. major and distinct from other L. tropica strains.
†Specimens were isolated by skin scraping for diagnostic purposes at the Department of Dermatology at Hadassah Hospital, Jerusalem.

Main Article

References
  1. Desjeux  P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg. 2001;95:23943. DOIPubMedGoogle Scholar
  2. Jaffe  CL, Baneth  G, Abdeen  ZA, Schlein  Y, Warburg  A. Leishmaniasis in Israel and the Palestinian Authority. Trends Parasitol. 2004;20:32832. DOIPubMedGoogle Scholar
  3. Anis  E, Leventhal  A, Elkana  Y, Wilamowski  A, Pener  H. Cutaneous leishmaniasis in Israel in the era of changing environment. Public Health Rev. 2001;29:3747.PubMedGoogle Scholar
  4. Jacobson  RL, Eisenberger  CL, Svobodova  M, Baneth  G, Sztern  J, Carvalho  J, Outbreak of cutaneous leishmaniasis in northern Israel. J Infect Dis. 2003;188:106573. DOIPubMedGoogle Scholar
  5. Schnur  LF, Nasereddin  A, Eisenberger  CL, Jaffe  CL, El Fari  M, Azmi  K, Multifarious characterization of Leishmania tropica from a Judean desert focus, exposing intraspecific diversity and incriminating Phlebotomus sergenti as its vector. Am J Trop Med Hyg. 2004;70:36472.PubMedGoogle Scholar
  6. Klaus  S, Frankenburg  S. Cutaneous leishmaniasis in the Middle East. Clin Dermatol. 1999;17:13741. DOIPubMedGoogle Scholar
  7. Kamhawi  S, Modi  GB, Pimenta  PF, Rowton  E, Sacks  DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121:2533. DOIPubMedGoogle Scholar
  8. Pimenta  PF, Saraiva  EM, Rowton  E, Modi  GB, Garraway  LA, Beverley  SM, Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A. 1994;91:91556. DOIPubMedGoogle Scholar
  9. Sadlova  J, Hajmova  M, Volf  P. Phlebotomus (Adlerius) halepensis vector competence for Leishmania major and Le. tropica. Med Vet Entomol. 2003;17:24450. DOIPubMedGoogle Scholar
  10. Kamhawi  S, Ramalho-Ortigao  M, Pham  VM, Kumar  S, Lawyer  PG, Turco  SJ, A role for insect galectins in parasite survival. Cell. 2004;119:32941. DOIPubMedGoogle Scholar
  11. Warburg  A, Tesh  RB, McMahon-Pratt  D. Studies on the attachment of Leishmania flagella to sand fly midgut epithelium. J Protozool. 1989;36:6137.PubMedGoogle Scholar
  12. Hernandez  AG, Rodriguez  N, Stojanovic  D, Candelle  D. The localization of a lectin-like component on the Leishmania cell surface. Mol Biol Rep. 1986;11:14953. DOIPubMedGoogle Scholar
  13. Svobodova  M, Bates  PA, Volf  P. Detection of lectin activity in Leishmania promastigotes and amastigotes. Acta Trop. 1997;68:2335. DOIPubMedGoogle Scholar
  14. Jaffe  CL, McMahon-Pratt  D. Monoclonal antibodies specific for Leishmania tropica. I. Characterization of antigens associated with stage- and species-specific determinants. J Immunol. 1983;131:198793.PubMedGoogle Scholar
  15. Schonian  G, Schnur  L, el Fari  M, Oskam  L, Kolesnikov  AA, Sokolowska-Kohler  W, Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Trans R Soc Trop Med Hyg. 2001;95:21724. DOIPubMedGoogle Scholar
  16. Schwenkenbecher  JM, Wirth  T, Schnur  LF, Jaffe  CL, Schallig  H, Al-Jawabreh  A, Microsatellite analysis reveals genetic structure of Leishmania tropica. Int J Parasitol. 2006;36:23746. DOIPubMedGoogle Scholar
  17. Artemiev  M. Revision of the sandflies of the subgenus Adlerius (Diptera Phlebotominae, Phlebotomus). Zool Zh. 1980;59:117793.
  18. Lewis  D. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bulletin of the British Museum (Natural History). Entomology. 1982;45:121209.
  19. Lewis  D, Buttiker  W. Insects of Saudi Arabia: the taxonomy and distribution of Saudi Arabian Phlebotomus sandflies (Diptera:Psychodidae). Fauna of Saudi Arabia. 1982;4:35383.
  20. Aransay  AM, Scoulica  E, Tselentis  Y. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplastic DNA. Appl Environ Microbiol. 2000;66:19338. DOIPubMedGoogle Scholar
  21. Schonian  G, Nasereddin  A, Dinse  N, Schweynoch  C, Schallig  HD, Presber  W, PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis. 2003;47:34958. DOIPubMedGoogle Scholar
  22. El Tai  NO, El Fari  M, Mauricio  I, Miles  MA, Oskam  L, El Safi  SH, Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCR-based analyses and DNA sequencing. Exp Parasitol. 2001;97:3544. DOIPubMedGoogle Scholar
  23. Schnur  LF, Zuckerman  A. Leishmanial excreted factor (EF) serotypes in Sudan, Kenya and Ethiopia. Ann Trop Med Parasitol. 1977;71:27394.PubMedGoogle Scholar
  24. Modi  GB, Tesh  RB. A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol. 1983;20:5689.PubMedGoogle Scholar
  25. Depaquit  J, Ferte  H, Leger  N, Lefranc  F, Alves-Pires  C, Hanafi  H, ITS 2 sequences heterogeneity in Phlebotomus sergenti and Phlebotomus similis (Diptera, Psychodidae): possible consequences in their ability to transmit Leishmania tropica. Int J Parasitol. 2002;32:112331. DOIPubMedGoogle Scholar
  26. Kravchenko  V, Wasserberg  G, Warburg  A. Bionomics of phlebotomine sandflies in the Galilee focus of cutaneous leishmaniasis in northern Israel. Med Vet Entomol. 2004;18:41828. DOIPubMedGoogle Scholar
  27. Soares  RP, Barron  T, McCoy-Simandle  K, Svobodova  M, Warburg  A, Turco  SJ. Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp Parasitol. 2004;107:10514. DOIPubMedGoogle Scholar
  28. Martin-Sanchez  J, Gramiccia  M, Pesson  B, Morillas-Marquez  F. Genetic polymorphism in sympatric species of the genus Phlebotomus, with special reference to Phlebotomus perniciosus and Phlebotomus longicuspis (Diptera, Phlebotomidae). Parasite. 2000;7:24754.PubMedGoogle Scholar
  29. Depaquit  J, Ferte  H, Leger  N, Killick-Kendrick  R, Rioux  JA, Killick-Kendrick  M, Molecular systematics of the phlebotomine sandflies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) based on ITS2 rDNA sequences. Hypotheses of dispersion and speciation. Insect Mol Biol. 2000;9:293300. DOIPubMedGoogle Scholar
  30. Gebre-Michael  T, Balkew  M, Ali  A, Ludovisi  A, Gramiccia  M. The isolation of Leishmania tropica and L. aethiopica from Phlebotomus (Paraphlebotomus) species (Diptera: Psychodidae) in the Awash Valley, northeastern Ethiopia. Trans R Soc Trop Med Hyg. 2004;98:6470. DOIPubMedGoogle Scholar
  31. Lawyer  PG, Mebrahtu  YB, Ngumbi  PM, Mwanyumba  P, Mbugua  J, Kiilu  G, Phlebotomus guggisbergi (Diptera: Psychodidae), a vector of Leishmania tropica in Kenya. Am J Trop Med Hyg. 1991;44:2908.PubMedGoogle Scholar
  32. Evangelista  LG, Leite  AC. Histochemical localization of N-acetyl-galactosamine in the midgut Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol. 2002;39:4329. DOIPubMedGoogle Scholar
  33. Walters  LL. Leishmania differentiation in natural and unnatural sand fly hosts. J Eukaryot Microbiol. 1993;40:196206. DOIPubMedGoogle Scholar
  34. Pavlicek  T, Vivanti  S, Fishelson  F, Nevo  E. Biodiversity and microsite divergence of insects at "Evolution Canyon," Nahal Oren, Mt. Carmel, Israel. II. Orthoptera: Acrididae. Journal of the Entomologic Research Society. 2002;4:2539.
  35. Grove  SS. Leishmaniasis in South West Africa/Namibia to date. S Afr Med J. 1989;75:2902.PubMedGoogle Scholar
  36. Sang  DK, Njeru  WK, Ashford  RW. A possible animal reservoir for Leishmania tropica s.l. in Kenya. Ann Trop Med Parasitol. 1992;86:3112.PubMedGoogle Scholar
  37. Svobodova  M, Volf  P, Votypka  J. Experimental transmission of Leishmania tropica to hyraxes (Procavia capensis) by the bite of Phlebotomus arabicus. Microbes Infect. 2006;8:16914. DOIPubMedGoogle Scholar
  38. Fourie  PB. The life-span of mammals: estimates for the dassie (Procavia capensis). J S Afr Vet Assoc. 1978;49:1435.PubMedGoogle Scholar
  39. Ashford  RW. Leishmaniasis reservoirs and their significance in control. Clin Dermatol. 1996;14:52332. DOIPubMedGoogle Scholar
  40. Ashford  RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol. 2000;30:126981. DOIPubMedGoogle Scholar

Main Article

Page created: October 04, 2011
Page updated: October 04, 2011
Page reviewed: October 04, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external