presumably tested in other laborato-
ries involved, but we are not aware of
any publications to this end. The lack
of evidence for laboratory-acquired
infection with A H2N2 in our study
suggests that the risk was low under
controlled laboratory conditions.
However, only a large-scale serologic
study (which might still feasibly be
undertaken) could further substantiate
this finding.

Acknowledgments
We thank all assisting public health
professionals and study participants for
their support.

Annette Schrauder,*
Brunhilde Schweiger,*
Udo Buchholz,* Walter Haas,*
Daniel Sagebiel,*
Adrienne Guignard,*
and Wiebke Hellenbrand*
*Robert Koch Institute, Berlin, Germany

References
1. Eurosurveillance editorial team, Meijer A,
Brown C, Paget J. Worldwide laboratory
distribution of influenza A/H2N2 virus sim-
ilar to 1957–58 pandemic strain, labs asked
to destroy all samples immediately. Eurosurveillance. 2005;10. [cited 2006 Sep
15]. Available from http://www.eurosur-
veillance.org/ew/2005/050414.asp
2. World Health Organization. International
response to the distribution of a H2N2
influenza virus for laboratory testing: risk
considered low for laboratory workers and
the public. 2005 [cited 2006 May 22].
Available from www.who.int/csr/disease/
3. Normile D. Mounting lab accidents raise
4. Lim PL, Kurup A, Gopalakrishna G, Chan
KP, Wong CW, Ng LC, et al. Laboratory-
acquired severe respiratory syndrome. N
5. Seidler A, Nienhaus A. Epidemiologie der
berufsbedingten tuberkulose: ein literatur-
review zu konventionellen studien. In:
Nienhaus A, Brandenburg S, Teschler H,
editors. Tuberkulose als berufskrankheit:
ein leitfaden zur begutachtung. Landsberg
142–69.
6. Jacobson JT, Orlob RB, Clayton JL.
Infections acquired in clinical laboratories
NG, Good RC. Descriptive profile of tuber-
culin skin testing programs and laboratory-
adquired tuberculosis infections in public

Address for correspondence: Udo Buchholz,
Department for Infectious Disease
Epidemiology, Robert Koch Institute,
Seestrasse 10, 13353 Berlin, Germany; email:
buchholzu@rki.de

Methicillin-resistant
Staphylococcus aureus in Cat and Owner

To the Editor: A 3-year-old, neutered male, domestic shorthaired
... skin abscesses and pneumonia
3 months earlier, although no microbi-
ologic testing was performed.

Cytologic evaluation of exudate
from the cat’s lesions identified neu-
rophils and eosinophils with engulfed
cocci. Leukocytosis with eosinophilia
was found on a complete blood cell
count. No notable abnormalities were
present on thoracic radiograph,
abdominal ultrasonograph, urinalysis,
and tests for feline leukemia and
immunodeficiency virus. Skin biopsy
specimens were collected for histo-
logic examination, and swabs of the
exudates were submitted for bacterial
culture. Histopathologic findings
demonstrated ulcers and dermal gran-
ulation tissue with linearly arranged
eosinophils, mast cells, neutrophils,
and plasma cells between dense,
homogeneous collagen bundles (scler-
osing dermatitis). This pattern of
inflammation is distinct from most
staphylococcal infections of the skin,
and it has been suggested that this
uncommon histologic finding in cats
is associated with methicillin-resistant
staphylococcal infection (1).

Methicillin-resistant Staphylo-
coccus aureus (MRSA) was isolated

Figure

Figure. Titers of antibodies to influenza A H2N2 virus in laboratory personnel (n = 25; 13
born before 1969) and a comparison group born before 1969 (n = 32). The age listed is
that in 2005. Titers <10 were assigned a value of 1.
were identified by real-time PCR (Panton-Valentine leukocidin (PVL)) and genes encoding production of the δ-hemolysin toxin. The isolate was classified as the USA300 clone. The isolate was susceptible to chloramphenicol, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin, but resistant to β-lactams, enrofloxacin, and erythromycin. After identification of MRSA in the cat, swabs of the anterior nares were collected from the owner and the cat, and MRSA was identified in specimens from both. All isolates were indistinguishable.

This is the first report of isolation of USA300 MRSA from a household pet. USA300 is a community-associated clone that has disseminated widely throughout North America and Europe (4,5) and is reaching epidemic proportions in many regions. MRSA is becoming an important cause of skin and soft tissue infection in persons in the community (4,5) and has also been implicated in invasive infections such as necrotizing pneumonia (6). This clone possesses genes for PVL production, which may be an important factor in its apparent virulence (4,5). Additional characterization of the isolates from this study was not performed; however, USA300 has previously been reported to carry staphylococcal cassette chromosome mec (SCC mec) type IVa and classified as sequence type 8 (ST8) by multilocus sequence typing (4,5).

Reports of MRSA infection and colonization in pets have increased dramatically in the past few years (3,7–9). Although this rise may be partially the result of increased testing and reporting, MRSA is definitely emerging in pet populations throughout the world. The role of pets in transmission of MRSA is still unclear; however, recent evidence suggests that MRSA can be transmitted between persons and their pets, in both directions (9,10). Reports of MRSA infection and colonization in pets have indicated that pets tend to be infected with isolates that are consistent with clones that are predominant in the human population in their area (7–9). Accordingly, USA100 accounted for initial isolations of MRSA in pets in North America (9). The similarity between pet and human isolates has led to speculation that pet MRSA is closely linked to human MRSA and that the source of MRSA in pets may often be colonized humans. If this is the case, it is not surprising that USA300 would emerge as a cause of disease in pets as it increases in prevalence in the human population. Considering the rapid dissemination of USA300 in humans in the United States, particularly in California, where it is the predominant community-associated clone, finding USA300 in a household pet in that state is not unexpected.

Because indistinguishable isolates were collected from the owner and the infected cat, MRSA likely was transmitted between species in the household. However, while it is tempting to assume that the owner was the source of infection because of the owner’s previous history of a soft tissue infection, this cannot be definitively determined on the basis of the timing of sampling in this case.

MRSA appears to be emerging as an important veterinary and zoonotic pathogen, and the epidemiology of MRSA in household pets may take a parallel course to that in humans. Ongoing MRSA surveillance in animals is required, including proper testing of specimens from clinically affected animals and surveillance for colonization. The potential for transmission of this clone between humans and pets should also be evaluated to clarify its epidemiology and to facilitate development of measures to reduce household transmission.

References

Community-associated Methicillin-resistant Staphylococcus aureus, Colombia

To the Editor: Methicillin-resistant Staphylococcus aureus (MRSA) is an established nosocomial pathogen worldwide but more recently has emerged as a highly virulent organism in the community, particularly in the United States (1–3). In Latin America, community-associated MRSA (CA-MRSA) has only been described in the southern area of the continent (Uruguay and Brazil) (4,5). No reports from the Andean region are available. We describe 2 cases of CA-MRSA causing soft-tissue infections (1 severe) in Colombia.

The first case was in a 19-year-old man with a history of trauma to the left side of his body 1 week before admission after a fall. On admission, he complained of 2 days of fever, malaise, erythema and induration in the left hemithorax extending to the left thigh, and purulent secretion from an excoriation on the anterior aspect of the left thigh. He had no previous medical history. No previous hospitalizations or antimicrobial drug prescriptions were documented, nor did he report relatives with history of recent hospitalizations. Vital signs at admission were normal except for fever (39°C), and physical examination showed induration and erythema in the region of left hemithorax extending to the thigh, with an area of excoriation in the same thigh with purulent discharge. Laboratory evaluation showed a leukocyte count of 23.1×10⁹/L (86% neutrophils with 2% band forms) and elevated C-reactive protein levels.

The patient was hospitalized. Because necrotizing fascitis was suspected, intravenous ampicillin-sulbactam (12 g per day) was started, and surgical evaluation was requested. The patient underwent surgical debridement of the left thigh, left hemiabdomen, and hemithorax, which confirmed the diagnosis of necrotizing fascitis. Intravenous vancomycin (1 g every 12 h) was added to the regimen, and the patient was transferred to the intensive care unit. After several surgical debridements, the patient underwent placement of cutaneous-muscle grafts. He was discharged from the hospital without complications after completing 14 days of antimicrobial agents.

The second case involved a 53-year-old man with no history of previous hospitalizations who reported to the emergency department with a 3-day history of fever, pain, swelling, and warm sensation on the posterior aspect of the left thigh. A diagnosis of cellulitis was made, and cephalixin (500 mg every 6 h) and gentamicin (160 mg intramuscularly every 24 h) were administered for 7 days without improvement. He returned to the hospital with worsening symptoms, an area of induration of 4×4 cm in the thigh, and purulent discharge. Drainage of the lesion was performed, and oral trimethoprim and sulfamethoxazole (160 and 800 mg, respectively, every 12 h) was started. His clinical signs and symptoms completely resolved after 7 days of therapy.

Tissue culture from secretions from both patients showed gram-positive cocci in clusters on the Gram stain, and subsequent cultures yielded MRSA. Species identification and presence of the mecA gene were confirmed by PCR, as described previously (6). MICs were determined by using the agar diffusion test, according to Clinical and Laboratory Standards Institute recommendations (7). Both organisms were susceptible to vancomycin, teicoplanin, chloramphenicol, linezolid, ciprofloxacin, gentamicin, and rifampin. The isolate from the second patient was resistant to erythromycin and susceptible to clindamycin, exhibited the M phenotype on the double-disk diffusion assay (D test), and harbored the msrA gene, encoding an efflux pump (8). In contrast, the first isolate was susceptible to both erythromycin and clindamycin and resistant to tetracycline (MIC >64 µg/mL). Because infections caused by CA-MRSA isolated elsewhere are associated with the presence of the lukF gene encoding the Panton-Valentine leukocidin toxin and the staphylococcal chromosome cassette mec (SCCmec) type IV, the presence of both was evaluated by PCR, as described previously (9). Both isolates were positive for lukF and harbored the SCCmec type IV.

The molecular epidemiology of healthcare-related MRSA in Colombia has changed during the past 3 years (10), but no reports of CA-MRSA had emerged. We believe these to be the first reports of CA-MRSA in Colombia with similar characteristics to those reported elsewhere. No risk factors associated with healthcare-associated MRSA were found in either of these patients, and the patients were not epidemiologically