Bat-associated Rabies Virus in Skunks

Mira J. Leslie,* Sharon Messenger,† Rodney E. Rohde,‡ Jean Smith,§ Ronald Cheshier,¶ Cathleen Hanlon,§ and Charles E. Rupprecht§

Rabies was undetected in terrestrial wildlife of northern Arizona until 2001, when rabies was diagnosed in 19 rabid skunks in Flagstaff. Laboratory analyses showed causative rabies viruses associated with bats, which indicated cross-species transmission of unprecedented magnitude. Public health infrastructure must be maintained to address emerging zoonotic diseases.

In North America, >90% of cases of rabies in animals occur in wildlife (1); several mammalian taxa harbor characteristic rabies virus variants (RABVV). In Arizona, skunks (Mephitis mephitis) and gray foxes (Urocyon cinereoargenteus) maintain independent rabies enzootic cycles, and in indigenous bats, rabies has been diagnosed in 14 of 28 species (Arizona Department of Health Services, unpub. data). Although skunks live throughout Arizona, until 2001, rabid skunks had been found only in the southeastern quadrant of the state.

In the United States, bat RABVV are a source of infection for humans and other mammals (2–8). Typically, interspecies infection produces a single fatal spillover event; secondary transmission has rarely been observed. Antigenic typing of rabid carnivores in Arizona from 1996 through 2000 identified bat RABVV in 1 domestic dog and 2 gray foxes. This report describes the largest documented rabies epizootic among terrestrial mammals infected with bat RABVV, with perpetuated animal-to-animal transmission. Coincident with the zoonotic disease significance, this report provides contemporary insight into pathogen evolution (9).

The Study

In January 2001, a homeowner contacted Flagstaff Animal Control about a dead skunk. Although no human had been exposed to the skunk, tissues were submitted to the Arizona State Health Laboratory, where rabies was diagnosed. This skunk was the first rabid terrestrial wild carnivore reported from the area. The Texas Department of State Health Services subsequently identified an RABVV associated with bats in tissues sent for antigenic characterization. From January through April, 14 more skunks, dead or exhibiting abnormal behavior, were found throughout a large residential subdivision within 4 km of the initial case. All were infected with the same bat RABVV. From April through July, 4 more skunks infected with bat RABVV were identified ≈9 km west of the initial focus (Figure 1). Control measures included prohibiting relocation of nuisance skunks, comprehensive public education, pet rabies vaccine clinics, and a 90-day emergency quarantine requiring pets to be leashed or confined and vaccinated (Figure 1). Additionally, 217 urban skunks were vaccinated and marked with ear tags during a 6-month phased program of trap, vaccinate, and release.

In Flagstaff and the surrounding county, during the decade before this epizootic, 2 rabid bats, on average, were reported each year. During the epizootic, 218 animals were submitted for rabies testing (Table). Rabies was confirmed in 19 (13%) of 145 tested skunks and 2 (9%) of...
22 tested bats. Although most (18 [95%]) of the rabid skunks were identified and reported by lay citizens, no contact between these skunks and humans or domestic animals was reported.

Local baseline population estimates were not available to indicate whether skunk demography affected disease attributes. Synchronous with this outbreak, independent epizootic activity caused by well-established skunk RABVV was documented in southern Arizona, which suggests that regional skunk epizootiologic dynamics were similarly affected. Skunks’ seasonal behavior may have contributed to transmission events. This epizootic was initially recognized when a dead skunk appeared in a snow-covered backyard, during a season when skunks are in communal dens. Given an incubation period of 2 months, most transmission would have occurred between late autumn (when skunks are in their dens) and late winter (when they are mating). The Flagstaff epizootic peak coincided with nationwide seasonal trends of rabid skunks (1).

Enhanced postepizootic surveillance in Flagstaff did not detect additional rabid terrestrial mammals for the next 3 years. However, in 2004, a total of 5 skunks found in the initially affected east Flagstaff neighborhood and 1 fox 28 km south of Flagstaff were infected with the same bat RABVV (10).

Viruses isolated from the rabid skunks exhibited monoclonal antibody patterns similar to RABVV associated with big brown (Eptesicus fuscus) and Myotis bats in the western United States (11). These are among the most abundant bat species in Arizona and often roost in houses and outbuildings; however, no bat colonies were found in association with any of the rabid skunks. Restriction digests of PCR amplicons from the rabid skunks did not match patterns known for RABVV from North American terrestrial reservoirs (12). Phylogenetic analysis of a 300-bp region of the N gene showed that the Flagstaff skunk RABVV was identical (100%) to Arizona bat RABVV (online Appendix Table, available from http://www.cdc.gov/ncidod/EID/vol12no08/05-1526-appT.htm, and Figure 2A), and differed by 22% from skunk and gray fox RABVV. A monophyletic clade (clade A) of 8/8 big brown, 5/14 Myotis, and 1/6 southern yellow (Lasiurus ega) bats shared >95% identity with Flagstaff skunk RABVV. An additional 44 samples, representing 11 bat species, differed by >8% from Flagstaff skunk RABVV.

An analysis of clade A, which incorporates N and G genes, indicated that the Flagstaff skunk RABVV were more closely related to 2 bat RABVV (E. fuscus from Coconino County, M. velifer from Maricopa County) collected in 1999 and 1997 than to the 2 bat RABVV collected locally during the outbreak. In clade B, subclade 1 RABVV were collected from January through early April...
from the northeastern region of the outbreak, whereas sub-
clade 2 RABVV were collected from early March through
July from the southeastern and western regions of the out-
break (Figure 1). However, phylogenetic data do not sup-
port a wavelike spread from northeast to west because this
would require nesting of subclade 1 within subclade 2. In
contrast, both subclades exhibit independently derived
mutations. East-to-west epizootic movement of RABVV
within subclade 2 (sk16–19 form a monophyletic clade
nested within subclade 2) during April is supported by the
data and may be related to dispersal of infected skunks
along river corridors or translocation by humans. One per-
son reported trapping, moving, and releasing a skunk
before the outbreak was known in the community.
Alternatively, apparent shifts may be an artifact of intensi-
fied public awareness and reporting. Lack of sampling in
the uninhabited forest between the eastern and western foci
limits our ability to discriminate among these hypotheses.

Conclusions
This is the largest recorded cluster of bat RABVV
infection in terrestrial mammals. Investigation of this
novel outbreak showed evolution in action with the emer-
gence of an RABVV that successfully adapted from
Chiroptera to Carnivora. Previously documented clusters
involving 3–4 to terrestrial mammals infected with a single
insectivorous bat rabies virus variant did not corroborate
sustained transmission (12). Although >1 skunk may have
been exposed to a single rabid bat, it is highly unlikely that
each skunk was exposed to the same bat or that multiple
bat-skunk exposures occurred. We could not ascertain the
complete scope of this outbreak or whether it was the
index event. Phylogenetic analyses support the evolution
of 2 independent lineages, suggesting establishment for
months or years. Additionally, virus isolation from salivary
glands of 5 affected skunks and the reappearance of rabid
skunks with the same RABVV in 2004 support the proba-
ibility of independent transmission.
The recognition of this epizootic can be credited to a
coordinated laboratory-based disease surveillance program
to monitor sick and dead wildlife for potential zoonoses
(plague, tularemia, rabies) even in situations lacking
human or pet exposures. Comprehensive animal disease
surveillance provides direct benefits to public health and
animal health by promoting early recognition of risk and
opportunities for disease control and prevention inter-
ventions.
Unpredictable health threats related to emerging
zoonoses, especially those involving wildlife reservoirs,
pose notable surveillance and control challenges (13–15).
Recent bioterrorism initiatives emphasize integration of
human and animal disease surveillance, and enhanced lab-
oratory capacity, as essential functions in zoonosis detec-
tion (13). Rabies surveillance and control programs serve
as historic prototypes for effective, long-term, public
health programs. Quintessential zoonotic disease programs
require innovative and expanded capacities, commitments
to public health and veterinary laboratory infrastructure,
and appropriate interagency and interdisciplinary coordi-
nation and communication.

Acknowledgments
We thank the citizens of Flagstaff and a large multiagency
task force, who contributed to managing this outbreak, including
Flagstaff City Police Department Animal Control Program, B.
Worgess, P. Barbeau, C. Levy, J. Henderson, M. VanDeGriend,
D. Bergman, Northern Arizona University, R. Rosatte, Texas
Department of State Health Services Rabies Laboratory, M.
Niezgoda, L. Orciari, J. Dragoo, Arizona Department of Game
and Fish, Coconino County Humane Society, and the Coconino
County Board of Supervisors. We also thank Doug Beckner for
the timeline graphic.

Dr Leslie was Arizona’s state public health veterinarian dur-
ing 1995–2002 and currently holds the same position in
Washington State. Her work is focused on surveillance, investi-
gation, and control of zoonotic and vectorborne diseases. She
chairs the National Association of State Public Health
Veterinarian’s Compendium of Animal Rabies Prevention and
Control Committee.

References
1. Krebs JW, Mandel EJ, Swerdlow D, Rupprecht CE. Rabies surveil-
2004;225:1837–49.
2. Brass DA. Rabies in bats: natural history and public health implica-
3. Messenger SL, Smith JS, Orciari LA, Yager PA, Rupprecht CE.
Emerging patterns of rabies deaths and increased viral infectivity.
4. Mondul AM, Krebs JW, Childs JE. Trends in national surveillance for
5. Anderson LJ, Nicholson MB, Tauxe RV, Winkler WG. Human rabies
in the United States, 1960 to 1979: epidemiology, diagnosis, and pre-
7. Rohde RE, Mayes BC, Smith JS, Neill SU. Bat rabies, Texas,
8. McQuiston JH, Yager PA, Smith JS, Rupprecht CE. Epidemiologic
characteristics of rabies virus variants in dogs and cats in the United
9. Badrane H, Tordo N. Host switching in Lyssavirus history from the
vector/rabies/rab04.htm

Address for correspondence: Mira J. Leslie, Washington Department of Health, Communicable Disease Epidemiology, 1610 NE 150th St, MS K17-9, Shoreline, WA 98155-9701 email: Mira.Leslie@doh.wa.gov

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.