transmission after natural disasters is low but real and that it is not directly related to the disasters and dead bodies, but primarily associated with the characteristics of the displaced population within the local disease ecology. This belief supports the need for rapid but accurate assessment of health status, risk, and needs, the results of which greatly influence the nature of relief activities (4). Key functions of relief teams are communicable disease surveillance, early warning, and rapid response to epidemic-prone situations or outbreaks.

As an example, on October 26, 2005, after an earthquake in Pakistan, the World Health Organization asked the French military epidemiologic assessment team (1 epidemiologist and 1 veterinarian) to perform a sanitary assessment after cases of acute bloody diarrhea were reported in the camp of Tariqabad (estimated population 2,000), near Muzaffarabad. The assessment highlighted a lack of safe water and sanitation facilities, low routine immunization coverage, and disruption of healthcare services.

To prevent further diarrhea, we recommended improving the overall water and sanitation conditions. A medical team from a French nongovernment organization was also provided to help the 1 physician at the camp. Concurrently, we recommended a vaccination campaign as preventive strategy against diseases likely to occur in such conditions: tetanus, diphtheria, and measles. These measures were quickly implemented to reduce the overall risk, and no further unusual increases in disease incidence were noted during the following weeks. As in another outbreak documented in a camp in the Muzaffarabad area (5), rapid detection, response, and implementation of control measures are critical for minimizing the illness and death associated with outbreaks in these high-risk populations.

Rémy Michel,* Jean-Paul Demoncheaux,† Jean-Paul Boutin,* and Dominique Baudon†

*Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France; and †Direction Régionale du Service de Santé des Armées, Lyon, France

References

Search past Issues

EID Online

www.cdc.gov/eid

786 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 13, No. 5, May 2007
The number of sapovirus cDNA copies per gram of stool specimen was analyzed and a discrepancy was found between the different norovirus genogroups (10). Chan et al. found that noroviruses GI and GII showed medians of 8.4×10^8 and 3.0×10^8 copies/g of stool specimen, respectively, and speculated that increased viral loads were caused by higher transmissibility of norovirus GII strains (10). Our results showed that sapovirus GII Nay1 and GIV Yak2 strains showed higher viral loads than norovirus GII strains. These results suggest that a high degree of shedding of sapovirus GII Nay1 and GIV Yak2 strains may have caused the outbreak of gastroenteritis. However, to elucidate this suggestion, further studies are needed with other sapovirus strains.

This study was supported in part by a grant for Research on Emerging and Re-emerging Infectious Diseases from the Ministry of Health, Labor and Welfare of Japan, and a grant for Research on Health Science Focusing on Drug Innovation from The Japan Health Science Foundation.

Grant S. Hansman,*
Setsuko Ishida,†
Shima Yoshizumi,†
Masahiro Miyoshi,†
Tetsuya Ikeda,† Tomoichiro Oka,* and Naokazu Takeda*

*National Institute of Infectious Diseases, Tokyo, Japan; and †Hokkaido Institute of Public Health, Hokkaido, Japan

References

Address for correspondence: Grant S. Hansman, Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan; email: ghansman@nih.go.jp

Salmonella Typhimurium in Hihi, New Zealand

To the Editor: The recent finding of a previously unrecorded *Salmonella* strain in an endangered New Zealand passerine (the hihi, *Notiomystis cinerea*; [7]) offers the rare opportunity to observe the initial arrival and pathology of an epizootic and to determine its population-level effect. Over 8 days in February 2006, 6 freshly dead hihi were discovered in a free-living island population. Pathologic findings were similar: birds were in good body condition with substantial subcutaneous fat reserves and no gross lesions in the crop, indicating death from a highly pathogenic disease. Histopathologic examination showed septicemia and inflammatory necrosis of organs, particularly the liver and spleen, typical of salmonellosis in birds (2). Microbiologic examination of liver samples isolated heavy growths of the bacterium *Salmonella enterica* serotype Typhimurium DT195. During the same period, 3 more dead hihi were found, but they were too decomposed for postmortem examination.

Hihi are nectar-feeders that declined to near extinction after European colonization of New Zealand and survived on a single island refuge (Hauturu). Since 1980, 14 attempts have been made to reintroduce the species to 6 other sites, resulting in 3 new populations that persist with management. The *S*. Typhimurium DT195 outbreak occurred within a reintroduced population on Tiritiri Matangi Island. Management includes providing supplementary food (sugar water) diluted with local rain water; feeders are sterilized before each use.

Because disease in hihi is closely monitored, the outbreak indicates that *S*. Typhimurium DT195 is a novel serotype for this species. During December 2005, fecal screening of 18 broods (37 nestlings) from Tiritiri Matangi Island found no evidence of enteric pathogens; screenings in February and May 2005 (40 adult and juvenile birds) from Tiritiri Matangi Island similarly returned negative results. Screening in all hihi populations during 2004 also found no evidence of *Salmonella* infection (32 adults and juveniles at Tiritiri Matangi, 29 at Hauturu, and 27 at Kapiti), and a 15-year pathology database from 230 dead hihi collected across these populations and a captive breeding facility lists no salmonellosis cases (J.G. Ewen and M.R. Alley, unpub. data).

Documentation of the emergent stages of infectious disease in endangered species is rare (3,4). This bacterium strain is absent from New Zealand’s livestock and wildlife (www.surv.esr.cri.nz/enteric_reference/nonhuman_salmonella.php). Nontyphoid *Salmonella* spp. are a major health concern worldwide (5), and New Zealand conducts intensive surveillance to maintain food safety. The New Zealand Wildlife Health Centre has not reported *S*. Typhimurium DT195 despite necropsies of >3,000 wild birds during 1996–2006, which suggests this strain is rare in New Zealand, despite its presence in other countries (6).

S. Typhimurium DT195 has been detected in 3 human patients in New Zealand (1 each in 2002, 2003, and 2006). The *S*. Typhimurium DT195 isolated from hihi in the February 2006 outbreak were indistinguishable from those isolated from the human case-patient in 2006 (see [2] for methods). Tiritiri Matangi is an isolated island nature reserve 3 km off the New Zealand coast, which prevents movement of hihi to other areas. How this strain appeared in a human patient and as an epizootic in an isolated island nature reserve is intriguing. The most recent human case was diagnosed on the North Island of New Zealand, but the person was not living in close proximity to the birds. Tiritiri Matangi receives ≈30,000 human visitors per year, but whether the person with *S.*