LETTERS

Qiao-Ping Wang,* Xiao-Guang Chen† and Zhao-Rong Lun*

*Sun Yat-Sen (Zhongshan) University, Guangzhou, People’s Republic of China; and †Southern Medical University, Guangzhou, People’s Republic of China

References


Address for correspondence: Zhao-Rong Lun, Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China; email: lssrz@mail.sysu.edu.cn

Possible Avian Influenza (H5N1) from Migratory Bird, Egypt

To the Editor: Wild migratory birds are reservoirs for low pathogenic avian influenza (LPAI) viruses (1), but their role in transmitting highly pathogenic avian influenza (HPAI) viruses is hotly debated and unclear (2–4). Beginning in July 2005, a clade of HPAI (H5N1) viruses rapidly expanded from an apparent focus in western People’s Republic of China and spread to the Middle East, Africa, and Europe (5).

Genetic analysis of HPAI virus isolates from dead wild birds along major flyways indicated that the strains were closely related to the Qinghai H5N1 A/bar-headed goose/Qinghai/65/2005 virus (clade II) (GenBank accession no. DQ095622). In addition to transmission to domestic poultry, HPAI (H5N1)–infected mute swans have been implicated in direct transmission to humans in Azerbaijan (6).

The US Naval Medical Research Unit No. 3 and the Ministry of Environment of Egypt have collaborated since 2003 in obtaining samples from migratory birds to detect circulating influenza viruses. During the 2005–06 migratory birds season, 1,304 migratory birds were sampled from either live bird markets or cage birds trapped in a cage by a fisherman sampled from the Damietta region. The low viral load, coupled with the failure to isolate the virus, precluded the laboratory from conducting sequence analysis at the time on the basis of insufficient template material. After the outbreak of influenza A (H5N1) in poultry and humans in Egypt in February 2006, additional retrospective attempts to concentrate RNA were used to assess potential introduction scenarios. After multiple RNA extractions were conducted and the RNA was concentrated, this specimen was found to be positive for the neuraminidase 1 (N1) gene by real-time PCR.

The hemagglutinin gene from both teat strains was sequenced (≈1,596 bp). Sequences were aligned with other influenza A (H5N1) strains from Egypt (9 from humans, 5 from chickens). Twenty other strains with high similarity and from different locations were selected by using a GenBank search algorithm and included in the alignment. A phylogenetic analysis was conducted by using the Kimura 2-parameter model. The LPAI H5 virus strain was used as an outgroup in a neighbor-joining phylogenetic tree. Bootstrap analysis with 500 replicates of sequence data was also conducted by using MEGA 3.1 software (8).

Phylogenetic analysis showed clustering of the HPAI (H5N1) strains collected from 1 geographic region (country) (online Appendix Figure, panel B). All HPAI (H5N1) strains from Egypt from humans or chickens analyzed clustered with a bootstrap support value of 98%. Furthermore, the A/Teal/Egypt/14051-NAMRU3/2006
mid-February or the teal was infected. Whether poultry were infected before HPAI virus may have been introduced.

Data presented herein suggest that an introduction of HPAI viruses into new locations. might serve as vectors for introduction of the virus detected in the other teal a few weeks earlier.

Brown et al. reported that species can vary greatly in their response to HPAI (9). At least in ducks, it appears that viral shedding is highest in birds with clinical signs of infection, and lowest, as seen in the common teal infected with the HPAI strain in this study, in birds with subclinical infections. These subclinical infections may be due to flock immunity from previous exposure to LPAI H5 virus or genetic factors. This suggestion is conceivable in light of the LPAI H5 viruses that are naturally resistant wild birds may be due to flock immunity from previous exposure to LPAI H5 virus or genetic factors. This suggestion is conceivable in light of the LPAI H5 virus detected in the other teal a few months earlier.

Such naturally resistant wild birds might serve as vectors for introduction of HPAI viruses into new locations. Data presented herein suggest that an HPAI virus may have been introduced into Egypt through a migratory bird. Whether poultry were infected before mid-February or the teal was infected with influenza A virus by a domesticated species is not unknown. The low degree of viral shedding indicates that detection of any influenza A virus in wild birds in a new region should be immediately followed up with efforts to characterize the virus to control the spread of new subtypes/strains of HPAI into new locations.

Acknowledgments

We thank the Egyptian Ministry of Environment for its continued collaborative efforts in migratory bird surveillance.

This study was supported by the Department of Defense Global Emerging Infections System (work unit no. 847705.82000.25GB.E0018).

Magdi D. Saad,* Lu’ay S. Ahmed,† Mohamed A. Gamal-Eldein,† Mohamed K. Fouda, Fouda M. Khalil,† Samuel L. Yingst,* Michael A. Parker,* and Marshall R. Montevillel*

*US Naval Medical Research Unit No. 3, Cairo, Egypt; and †Ministry of Environment, Cairo, Egypt

References


Address for correspondence: Magdi D. Saad, Commanding Officer, US Naval Medical Research Unit No. 3, PSC 452, Box 5000, MDS Code 303, FPO AE 09835-0007, Cairo, Egypt; email: darwishm@namru3.med.navy.mil

Community-acquired Extended-Spectrum β-Lactamase Producers, United States

To the Editor: Extended-spectrum β-lactamase (ESBL)–producing organisms have become a common problem for patients in hospitals and other healthcare facilities (1). Community-onset ESBL infections have recently been described in Spain, the United Kingdom, Israel, and Canada (2,3). Typically, the infections are urinary tract infections (UTIs) with CTX-M–producing Escherichia coli. These organisms may be resistant to most or all antimicrobial agents commonly used to treat UTIs, such as ciprofloxacin, trimethoprim-sulfamethoxazole, gentamicin, and ceftriaxone.

Although CTX-M–producing E. coli have previously been found in the United States (4), clinical descriptions of community-acquired ESBL-producing E. coli infections have not been reported in this country. We describe 2 healthy young women in Pennsylvania in whom UTI with CTX-M–producing E. coli developed.

A 25-year-old woman was seen in October 2006 at the emergency department of a hospital in Pittsburgh reporting frequent urination, chills, and bilateral back pain. She had no relevant past medical history except for previous UTIs. Results of a physical examination were unremarkable.

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 13, No. 7, July 2007 1121