Emergence and Spread of *Chlamydia trachomatis* Variant, Sweden

Björn Herrmann, Anna Törner, Nicola Low, Markus Klint, Anders Nilsson, Inga Velicko, Thomas Söderblom, and Anders Blaxhult

A variant of *Chlamydia trachomatis* that had escaped detection by commonly used systems was discovered in Sweden in 2006. In a nationwide study, we found that it is now prevalent across Sweden, irrespective of the detection system used. Genetic analysis by multilocus sequence typing identified a predominant variant, suggesting recent emergence.

In 2006 a new variant of *Chlamydia trachomatis* (nvCT) was discovered in Sweden (1). Because of a 377-bp deletion in the target sequence for amplification, the variant had escaped detection by 2 widely used nucleic acid amplification tests, Abbott m2000 (Abbott Laboratories, Abbott Park, IL, USA) and Cobas Amplicor/TaqMan48 (Roche Diagnostics, Basel, Switzerland) (1,2). The other test commonly used in Sweden, ProbeTec ET (Becton Dickinson [BD], Franklin Lakes, NJ, USA), detects the new variant because it uses a different DNA target sequence in the cryptic plasmid (3). The nvCT has now been reported from several of Sweden’s 21 counties (Figure 1). The aim of this study was to provide a national overview of the characteristics and extent of the new chlamydia variant through examination of surveillance trends, microbiologic laboratory data, and genetic analysis of new variant strains.

The Study

We examined national surveillance data reported to the Swedish Institute for Infectious Disease Control (Smittskyddsinstitutet) about chlamydia cases detected and the number of chlamydia tests performed. Trend analysis from 2004 to 2006 included only data for the first 6 months of each year to avoid any influence of changes in detection systems; some counties introduced different detection systems in late 2006 in response to the emergence of nvCT. The statistical methods are described in the online Technical Appendix (available from http://www.cdc.gov/EID/content/14/9/1462-Techapp.pdf). The total number of chlamydia cases detected in Sweden in the first 6 months of 2006 was lower than that in 2005, and the proportion of tests that were positive also fell (Table 1). From 2004 to 2006, the proportion of positive chlamydia tests was similar whether laboratories used Abbott/Roche or BD test systems. From 2004 to 2005, there was a relative reduction of 3.4% (95% confidence interval [CI] 5.8–1.0) in chlamydia positivity in laboratories using the Abbott or Roche methods but no change in the proportion of positive samples in laboratories using the BD test system (−0.4%, 95% CI −4.2 to +3.5). During the first 6 months of 2005 and 2006, the positivity rates of samples tested by Abbott or Roche systems fell further; samples tested that used the BD system remained stable. The estimated difference in proportions of chlamydia-positive samples in counties that used Abbott or Roche tests compared with counties that used the BD method was −9.5% (95% CI −14.1 to −4.7, p = 0.0005), after baseline differences and county differences in testing were controlled for.

We conducted microbiologic analyses on consecutive samples that were collected from 12 counties in late 2006 and early 2007. Cases of nvCT were identified by testing specimens with additional methods using alternative detection systems.
sequence targets (online Technical Appendix). The proportion of nvCT ranged from 20% to 64% in the 8 counties that used Abbott or Roche detection systems, compared with 7% to 19%, respectively, for counties that used BD tests (Figure 1). Additional data about gender, age, and clinical setting of diagnoses were available for 600 chlamydia-positive patients in the 4 counties using the BD system (Table 2). The proportion of nvCT cases varied between clinics (p = 0.020) and was higher at youth and venereal disease clinics than at antenatal and gynecology clinics. This variance might be because persons seeking treatment in these settings have higher levels of risk taking and more frequent changes in partners (4). There was no evidence of differences in the proportion of cases by gender (p = 0.103) or age (p = 0.558) because of nvCT.

Genetic characterization with a new high-resolution genotyping system (5) was performed on 48 specimens of nvCT from 2 counties that used the BD test system (n = 21); 2 counties that used Roche and Abbott systems (n = 18); and 9 specimens from Norway, Ireland, and France (online Technical Appendix). The nvCT showed a new genetic variant in the chromosomal target region hctB compared with previous findings in wild-type strains and thus constitutes a separate clone with the designation 21 (hctB), 19 (CT058), 1 (CT144), 2 (CT172), and 1 (phpB) in our system. All 48 specimens tested were of genotype E, and 46 were identical in the ompA gene to the reference strain E/Bour. The divergent specimens were from 2 persons known to be sexual partners and differed in a single nucleotide position. In the other 5 target genes, altogether comprising some 5,500 bp, all 48 specimens were identical.

Conclusions

Our study was a national systematic overview including surveillance, demographic, microbiologic, and genetic data about the emergence and spread of a mutant strain of _Chlamydia trachomatis_ in Sweden. A fall in the proportion of positive chlamydia test results in counties using Abbott or Roche test systems began in 2005 and continued in 2006, whereas positivity rates in counties using BD tests did not change. The mutant strain has now spread throughout Sweden. Notably, the new variant has scarcely been found outside Sweden (6), indicating that we need to improve our understanding of the sexual networks through which chlamydiae spread (7).

Our analysis suggests that widespread transmission of nvCT is recent, even if the mutation itself occurred some time ago, because 46 of 48 specimens from different places had identical sequences when we used a highly discriminatory multilocus sequence typing system (5). This hypothesis is supported by the lack of diversification in the mutant strains compared with the high degree of sequence variation in other sample collections that we have analyzed (5; and unpub. data). We expect new nucleotide substitutions to occur over time.

The area in Sweden in which nvCT originated is not known, but the consistently high proportion of nvCT found in the county of Dalarna suggests that the mutant might have been present in this region for longer than in other counties studied. nvCT comprised 64% of chlamydia-positive specimens over the study period in Dalarna as a whole, and up to 78% in some localities (7); elsewhere in Sweden (8–10) and worldwide (11,12), genotype E strains of different subvariants comprise ≈40% of chlamydia-positive specimens in heterosexual populations. These data might indicate that the high proportion of nvCT is not only a result of accumulation of chlamydia cases when diagnostics failed and treatment and contact tracing were inadequate. Further studies will be needed to determine whether nvCT also has a selective advantage that might outcompete the wild-type bacterium over time.

The emergence of this mutant strain of a sexually transmitted pathogen has implications for public health practice. A recent study estimates that some 8,000 chlamydia cases

Table 1. Numbers of chlamydia tests, positive results, and change in positivity rates, Sweden, 2004–2006

<table>
<thead>
<tr>
<th>Diagnostic test*</th>
<th>No. counties</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott/Roche</td>
<td>14</td>
<td>11,721/150,080 (7.8)</td>
<td>11,111/147,311 (7.5)</td>
<td>10,236/152,960 (6.7)</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>8</td>
<td>4,262/54,260 (7.9)</td>
<td>5,220/66,728 (7.8)</td>
<td>3,363/43,189 (7.8)</td>
</tr>
<tr>
<td>All tests</td>
<td>21</td>
<td>15,983/204,340 (7.8)</td>
<td>16,331/214,039 (7.6)</td>
<td>13,599/196,149 (6.9)</td>
</tr>
</tbody>
</table>

*One county used both Roche and Becton Dickinson tests.

Table 2. Distribution of cases of nvCT by gender, age, and clinic category in 4 selected counties that used the Becton Dickinson system*

<table>
<thead>
<tr>
<th>Factor</th>
<th>% nvCT (n/N)</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16 (45/273)</td>
<td>0.103</td>
</tr>
<tr>
<td>Female</td>
<td>12 (39/327)</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>14 (23/162)</td>
<td>0.558</td>
</tr>
<tr>
<td>20–24</td>
<td>16 (44/279)</td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td>11 (11/98)</td>
<td></td>
</tr>
<tr>
<td>≥30</td>
<td>10 (6/59)</td>
<td></td>
</tr>
<tr>
<td>Clinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venereal disease</td>
<td>15 (19/129)</td>
<td>0.020</td>
</tr>
<tr>
<td>Youth clinics</td>
<td>19 (39/210)</td>
<td></td>
</tr>
<tr>
<td>Gynecology</td>
<td>9 (13/150)</td>
<td></td>
</tr>
<tr>
<td>Antenatal/general practice</td>
<td>8 (6/77)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>21 (7/34)</td>
<td></td>
</tr>
</tbody>
</table>

*nvCT, new variant of _Chlamydia trachomatis_; n, number of nvCT cases detected; N, total number of _C. trachomatis_ cases detected.
†Determined by χ² test.
escaped detection in 2006 (7). This would have resulted in an ≈20% increase in reported chlamydia cases. Actual national figures for 2007 confirm such an increase, and the number of reported chlamydia cases has reached an all-time high in Sweden (Figure 2). Chlamydia infections, caused not only by nvCT, continue to rise (13,14), but the areas most heavily affected by the spread of nvCT have been in much the same situation as before chlamydia was first recognized as a pathogen. Failure to detect the nvCT over time have resulted in episodes of complicated infection all over the country, leading to ectopic pregnancies and infertility. Research is now needed to determine whether sequelae associated with chlamydia occur disproportionately in counties where test systems fail to diagnose the nvCT. The ability of this new variant to escape detection for so long shows that developers of future diagnostic tests need to take into account the structure and function of genomes when selecting appropriate target nucleic acid sequences in microorganisms. Currently, there are unique opportunities for research that could lead to insights into the immunobiology, transmission, and consequences of C. trachomatis.

Acknowledgments

Prevalence data on the new variant of C. trachomatis or samples for analysis were provided from different counties. We thank Kenneth Persson, Ida Björklund, Torvald Ripa, Jens Björkman, Andreas Mattussek, Christina Lundberg, Hans Fredlund, Maria Rotzén Östlund, Britta Loré, and Barbro Almqvist. Amir Moghaddam generously contributed 6 specimens from Oslo, Norway, Yvonne Lynagh kindly provided 2 specimens from Ireland, and Bertille Barbeyrac provided 1 sample from France.

Research on the new variant of C. trachomatis was supported by grants from Roche Molecular Diagnostics and Becton Dickinson.

Dr Herrmann is a microbiologist and associate professor at the University Hospital in Uppsala, Sweden. His major research interests are diagnostics and epidemiology of Chlamydia infections and the development of molecular methods for detecting different bacteria and viruses.

References

Address for correspondence: Björn Herrmann, Department of Clinical Microbiology, Uppsala University Hospital, S-751 85 Uppsala, Sweden; email: bjorn.herrmann@medsci.uu.se

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Centers for Disease Control and Prevention or the institutions with which the authors are affiliated.
Emergence and Spread of *Chlamydia trachomatis* Variant, Sweden

Technical Appendix

Analysis of National Surveillance Data

We used reports of diagnosed chlamydia infections reported to the Swedish Institute for Infectious Disease Control for the years 2004, 2005, and 2006. In late 2006, the institute recommended changes in laboratory diagnostic test systems to counties using Abbott (m2000) or Roche (COBAS Amplicor/TaqMan 48 CT ver 1) tests as a result of the new variant *Chlamydia trachomatis* (nvCT, see below). Because this could have affected patterns of testing and diagnosis, we restricted our analysis to data for the first 6 months of each year. First, we compared aggregated data from all counties from the first 6 months of 2004 and 2005, and calculated the relative change (with 95% confidence intervals [CI]) in the proportions of positive samples in counties using Abbott or Roche tests, and counties using the Becton Dickinson (BD) test. We then used a random effects model to examine the association between the diagnostic method and change in positivity rate between the first 6 months of 2005 and 2006. The model allowed for adjustment for the underlying time trend from 2005 to 2006, differences in positivity rates already present in 2005, and for county specific differences in coverage in testing of the target population. Examination of residual plots showed a good fit for the model.

Microbiologic Analysis

We collected data from consecutive samples tested over a period of 2 to 4 months in 12 counties between October 2006 and March 2007. From October 2006, all counties that used Abbott or Roche test systems for routine chlamydia diagnostics tested specimens in parallel with an assay using a target sequence not in the cryptic plasmid but in the chromosomal *ompA* gene (Artus *C. trachomatis* PCR, Qiagen, Hilden, Germany, or LightMix 480HT, TIB Molbiol, Berlin, Germany) (1), following a recommendation from the Swedish Institute for Infectious Disease Control. Discrepant cases were regarded as the new *C. trachomatis* variant.
Confirmation of nvCT was performed on subsets of discrepant cases by means of a real-time PCR specific to nvCT (2). In 4 counties (Norrbotten, Uppsala, Jönköping and Blekinge) that used the BD system for routine testing, consecutive chlamydia-positive specimens were collected from late November 2006 to February 2007. Urine samples were concentrated by centrifugation for 10 min at 5000 g and swab samples by Microcon centrifugation (Millipore) before DNA was purified using the MagAttract DNA mini kit (QIAGEN). The purified samples were reanalyzed with the Roche COBAS TaqMan 48 CT test. All specimens displaying discrepant results were tested by the PCR assay specific to nvCT (2). For each county we calculated the proportion of chlamydia positive specimens caused by nvCT. For the 4 counties that provided individual level data we compared the distribution of nvCT and wild type chlamydia cases according to gender, age, and diagnostic setting using chi-square tests.

Genetic Characterization

We used a new high-resolution genotyping system (3) to analyze specimens taken between October 2006 and March 2007. Specimens of nvCT were from 2 counties (Norrbotten, n = 7 and Uppsala, n = 14), which used the BD test system and from the counties Örebro, n = 13, and Skåne n = 5, which used the Roche and Abbott system, respectively. In addition, we analyzed 6 samples from Norway, 2 from Ireland and 1 from France. Accession numbers of sequences describing genetic variants found in the 48 nvCT specimens examined: CT058 type 19: EF690305; CT144 type 1: EF690306; CT172 type 2: EF690307; hctB type 21: EF690308; pbpB type 1: EF690309; ompA: EF690310 and X52557.

References

