CSF was negative for 16S bacterial RNA by PCR and culture-negative for *H. influenzae*, and the CSF pleocytosis had decreased substantially. These circumstances make it less likely that these signs were associated with the underlying *H. influenzae* disease and raise the possibility that superimposed HAdV-40 infection played a role. Because the patient had no diarrhea or respiratory symptoms, no evidence of immunodeficiency, no stool specimen available for testing, and no evidence of HAdV in throat swab specimen, the pathogenesis of HAdV-40 infection in this case is unknown. The origin of the maculopapular rash concurrent with neurologic symptoms in this patient is also unclear. Rash is not typical for *H. influenzae* infection and, although reported for some HAdV infections (7), has not been previously described for HAdV-40/41.

In conclusion, this case demonstrates the possibility of nongastroenteric, systemic infection involving CNS with enteric HAdV in immunocompetent hosts. Broad-specificity AdV PCR assay followed by amplicon sequencing enabled detection of this pathogen in an unexpected context and can be useful in defining the nongastroenteric disease effects associated with the enteric HAdVs.

Acknowledgments

We thank our collaborators from Thailand—Surapee Anantapreecha, Malinee Chittagamnitch, Sirima Pattamadilok, Ratigorn Guntrapong, Watcharee Saisongkhor, and Sununta Henchaichon—for their contribution to the Thailand Encephalitis Study; Henry “Kip” Baggett for his helpful review of the manuscript; and the numerous collaborators at the National Institute of Health of Thailand and the Centers for Disease Control and Prevention who performed the testing of specimens for agents other than AdVs.

Nino Khetsuriani, Suxiang Tong, Xiaoyan Lu, Shannon Reed, Dean Erdman, Angela Campbell,1 Krongkaew Supawat, Sahas Liamsuwan, Narayan Jothiskumar, and Sonja Olsen2

Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (N. Khetsuriani, S. Tong, X. Lu, S. Reed, D. Erdman, A. Campbell, N. Jothiskumar); National Institute of Health, Nonthaburi, Thailand (K. Supawat); Queen Sirikit National Institute of Child Health, Bangkok, Thailand (S. Liamsuwan); and International Emerging Infections Program, Nonthaburi (S. Olsen)

DOI: 10.3201/eid1502.081066

References

5. Jothiskumar N, Cromeans TL, Hill VR, Lu X, Sossey MD, Erdman DD. Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Appl Environ Mi-

1Current affiliation: University of Washington, Seattle, Washington, USA.
2Current affiliation: Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

Mesotherapy-associated Outbreak Caused by Mycobacterium immunogenenum

To the Editor: Mesotherapy, a procedure for medical and cosmetic treatment, involves use of microinjections of different biologically active substances into the dermis or subcutaneous adipose tissue. This controversial practice is used for spot contouring and anti-aging therapy. Concerns have been raised about mesotherapy complications, such as asptic subcutaneous necrosis and cutaneous non-tuberculous mycobacterial infections. Several rapidly growing mycobacterial species, primarily *Mycobacterium fortuitum*, *M. peregrinum*, *M. chelonae*, *M. abscessus*, *M. simiae*, and the newly described *M. massiliense*, *M. bolletii*, and *M. cosmeticum* (1–5), have been reported to cause infections and outbreaks originating from use of contaminated injectable solutions or skin antiseptics during mesotherapy and other invasive cosmetic procedures. We describe a mesotherapy-
associated outbreak involving an organism compatible with the novel *M. immunogenum* that Wilson et al. first described (6).

During September 2006–May 2007, 169 persons underwent mesotherapy at a private aesthetic clinic in the city of Buenos Aires, Argentina. For 28 (17%) skin lesions developed at the injection sites. Patients had been injected during the first 2 months of 2007 with phosphatidylcholine and amipolpaine after receiving a topical antiseptic containing lapryium chloride from a commercial supplier. The clinic and all the products used in the procedure had been licensed by the national regulatory authority. As soon as the outbreak became evident, the antiseptic solution in use was discarded; no additional cases occurred. By the time the investigation was conducted, these solutions were no longer available for culture.

Nineteen patients were referred to our hospitals. Physical examination found 2–20 nodules 0.5–4 cm in diameter per patient. Lesions were localized on legs (18 patients), buttocks (16), abdomen (1), and forearms (1) and had appeared 7–37 days (median 31 days) after the injection. Occasionally, some nodules produced a serous or purulent discharge, but secretions were not submitted for bacteriologic analysis.

Nodule biopsy was performed for 10 patients, and specimens were sent for histologic and bacteriologic investigations. Histologic examination demonstrated abscesses, areas of fat necrosis, and peripheral fibrous changes. Specimens from 3 patients produced acid-fast bacilli growth in blood agar, mycobacteria growth indicator tube, and Lowenstein-Jensen culture media. When subcultured at 3 different temperatures for identification, all 3 cultures grew preferentially at room temperature rather than at 37°C and 42°C. The isolated mycobacteria were nonpigmented, rapidly growing, and fastidious. The results of biochemical tests produced a hybrid pattern between *M. chelonae* and *M. abscessus*. Specifically, the isolates were unable to use citrate as the sole carbon source and to grow in the presence of 5% NaCl.

PCR-restriction analysis (PRA) of a 439-bp segment of the *hsp65* gene digested with *BstEII* and *HaeIII* was performed at the national reference laboratory for tuberculosis of the Instituto Malbran. Species was assigned according to the PRASITE website (http://app.chuv.ch/prasite). The profile of the 3 isolates fit the pattern of *M. immunogenum* type 2 as first described by Sampaio et al. (7); the isolates had 325- and 130-bp bands after *BstEII* digestion and 200-, 70-, 58-, and 55-bp bands after *HaeIII* digestion. This is our first detection of this particular PRA profile in Argentina since we started systematic *hsp65* PRA typing to identify mycobacteria in clinical isolates in 2005. Enterobacterial repetitive intergenic consensus PCR patterns of the 3 isolates were indistinguishable from each other and differed from epidemiologically unrelated clinical isolates of the *M. abscessus–M. chelonae* group, confirming the clonality of the 3 strains (Figure) (7).

Susceptibility to antimicrobial agents was determined by using standard Clinical and Laboratory Standards Institute broth microdilution method (8). Clarithromycin, ciprofloxacin, cefoxitin, doxycycline, amikacin, tobramycin, and imipenem MIC values for the 3 isolates were <0.125, 1, 32, >32, 32, 16, and 64 μg/mL, respectively. The disk elution method produced similar patterns of activity for the first 4 antimicrobial agents and inconsistent results for the remaining 3. Patients received a combination of clarithromycin and either ciprofloxacin or levofloxacin for 6–8 months. All 19 cases resolved favorably, although multiple pigmented retractile scars persisted after treatment.

*M. immunogenum* was identified as the etiologic agent of a variety of hospital-acquired infections, including an outbreak of keratitis, and as

---

![Figure](http://app.chuv.ch/prasite)  
**Figure.** DNA enterobacterial repetitive intergenic consensus PCR (eric) analysis of rapidly growing mycobacteria isolated from 3 patients in a mesotherapy-associated outbreak, January–February, 2007, Buenos Aires city, Argentina, compared with profiles of epidemiologically unrelated clinical isolates of the *Mycobacterium abscessus–M. chelonae* group. The dendrogram was constructed with the aid of BioNumerics software version 4.6 (Applied Maths, Sint-Martens-Latem, Belgium), using Dice unweighted pair group method coefficients with 1% tolerance. PRA, PCR-restriction analysis of the *hsp65* gene.
the potential cause of hypersensitivity pneumonitis in industrial metal-grinding machinists (6,7,9). This microorganism appears to differ from other members of the \textit{M. chelonae–abscessus} group by subtle mutations in rpoB, hsp65, the hypervariable region of 16S rRNA, and other housekeeping genes (5–7,9,10). The value of minor polymorphisms might be arguable for defining new species and for clinically managing patients. However, because of its rarity among clinical isolates in our country, the PRA type ascribed to \textit{M. immunogenum} proved to be a useful epidemiologic marker to investigate this outbreak.

Marcelo del Castillo, Domingo J. Palmero, Beatriz Lopez, Roxana Paul, Viviana Ritacco, Pablo Bonvehi, Liliana Clara, Marta Ambroggi, Lucia Barrera, and Carlos Vay

Author affiliations: Sanatorio Mater Dei, Buenos Aires, Argentina (M. del Castillo, C. Vay); Hospital F.J. Muñiz, Buenos Aires (D. Palmero, M. Ambroggi); Instituto Nacional de Enfermedades Infecciosas ANLIS C. G. Malbrán, Buenos Aires (B. Lopez, R. Paul, V. Ritacco, L. Barrera); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (V. Ritacco); Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires (P. Bonvehi); Hospital Italiano, Buenos Aires (L. Clara); and Universidad de Buenos Aires, Buenos Aires (C. Vay)

DOI: 10.3201/eid1502.081125

References


Address for correspondence: Domingo J. Palmero, N. Videla 559, (1424) Buenos Aires, Argentina; email: dpalmero@intramed.net.ar