
BioSense is a US national system that uses data from 
health information systems for automated disease surveil-
lance. We studied 4 time-series algorithm modifi cations de-
signed to improve sensitivity for detecting artifi cially added 
data. To test these modifi ed algorithms, we used reports 
of daily syndrome visits from 308 Department of Defense 
(DoD) facilities and 340 hospital emergency departments 
(EDs). At a constant alert rate of 1%, sensitivity was im-
proved for both datasets by using a minimum standard de-
viation (SD) of 1.0, a 14–28 day baseline duration for cal-
culating mean and SD, and an adjustment for total clinic 
visits as a surrogate denominator. Stratifying baseline days 
into weekdays versus weekends to account for day-of-week 
effects increased sensitivity for the DoD data but not for the 
ED data. These enhanced methods may increase sensitiv-
ity without increasing the alert rate and may improve the 
ability to detect outbreaks by using automated surveillance 
system data.

Since the late 1990s, the threats of bioterrorist attacks, 
the potential for outbreaks of natural disease such as 

severe acute respiratory syndrome and pandemic infl uenza, 
and the availability of computerized data have prompted the 
use of automated disease surveillance systems (1). Sourc-
es of information include clinical data, such as records of 
hospital emergency department visits, and nonclinical in-
formation, such as sales of over-the-counter remedies (2). 

However, human resources are limited for interpreting the 
large volume of available information. Thus, statistical al-
gorithms are needed to fi lter large volumes of data, focus 
attention on potential public health problems, and provide 
an objective measure of increases in disease activity.

BioSense is a US national automated surveillance 
system that receives data from various sources and makes 
them available for public health use. The data may be 
viewed simultaneously by local, state, and federal public 
health offi cials through the Internet-based BioSense Ap-
plication, which may be accessed on a jurisdiction-specifi c 
basis through the Centers for Disease Control and Preven-
tion (CDC) Secure Data Network (3). Data received in-
clude coded fi nal diagnoses and free-text chief complaints, 
which are assigned as appropriate to >1 of 11 syndrome 
groupings representing general illness categories such as 
respiratory and gastrointestinal illnesses (4) and to >1 of 
78 subsyndromes representing more specifi c categories 
such as asthma or cough (5). To identify days when dis-
ease indicator activity is higher than expected, BioSense 
uses a modifi ed version of the C2 algorithm, 1 of 3 algo-
rithms (C1, C2, and C3) developed for the Early Aberration 
Reporting System (EARS) (6,7).

The C2 algorithm uses a sliding baseline of 7 consecu-
tive recent days’ counts to calculate a mean (μ) and SD 
(st). The test statistic is (xt – μ)/st, the number of SDs by 
which the current value xt exceeds μ, or 0 if xt does not 
exceed μ. EARS uses a test statistic >3 to signal an alert 
(6,7). Owing to their simplicity, ease of implementation, 
and implicit correction for seasonal trends (only data from 
the prior 9 days are used), the EARS algorithms are widely 
used (8–10). However, the algorithms do not perform opti-
mally under all circumstances. First, because daily counts 
often vary by day of week, many alerts may be produced on 
high-count days such as Mondays and Tuesdays, and few 
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may be produced on low-count days such as weekend days. 
Second, the short (7-day) baseline period may produce un-
stable values for the mean and SD; thus, the minimum daily 
count that triggers an alert may vary widely over a short 
period. Third, using simple count data does not account for 
the population at risk, which is generally unknown in these 
systems and which may vary, especially during crisis situa-
tions. Although C2 can be used on rates rather than counts, 
prior evaluations have not shown that using rates improves 
performance (L. Hutwagner, pers. comm.). Finally, occur-
rences of many disease indicators are rare, resulting in cal-
culations for both expected values and SDs of 0; the EARS 
methods are not recommended in such instances. A mini-
mum SD may be used to avoid division by zero, but if this 
minimum value is set to 0.2, a count of 1 will be 5 SDs 
above the mean and trigger a high-level alert.

This article describes and evaluates modifi cations of 
C2 that retain its inherent advantages, address its potential 
limitations, and improve its performance. We used real dai-
ly syndrome counts from 2 sources as baseline data and as-
sessed the ability of various algorithms to detect additional 
counts artifi cially added to the data. Because all analyses 
were conducted at a constant alert rate of 1%, improve-
ments in sensitivity were not accompanied by an increase 
in alerts.

Methods
Four algorithm modifi cations, designed to address 

shortcomings in the C2 algorithm, were tested. The fi rst 
modifi cation tested was stratifi cation by weekdays versus 
weekend days. Although many methods have been used to 
adjust for differing counts by day of week (11), these meth-
ods may require customization to specifi c datasets and a 
long data history (up to several years). Our simple method 
is to stratify the baseline days used to calculate μ and st 
into weekdays versus weekend days. This stratifi cation is 
denoted the W2 algorithm. For example, a 7-day W2 base-
line for weekdays contains the most recent 7 weekdays. For 
unstratifi ed and stratifi ed analyses, the 2 days immediately 
before the index day were excluded from the baseline, a 
standard practice for C2, to avoid contamination with the 
upswing of an outbreak.

The second modifi cation tested was lengthening the 
baseline period. Because a 7-day period may provide in-
suffi cient data for an accurate and stable calculation of μ 
and st, we tested baseline periods of 7, 14, and 28 days. 
However, because we used data from <56 days before the 
index day, the stratifi ed 28-day baseline will include only 
≈16 days for weekend days.

The third modifi cation tested was adjustment for total 
daily visits. For the adjustment procedure, we used a for-
mula in which n0 = count of visits on the index day for the 
chosen syndrome (e.g., visits for the respiratory syndrome), 

and d0 = the total number of facility visits on the index day, 
including visits that were both assigned and unassigned 
to any of the 11 syndromes. Σni = total syndrome visits 
summed for all i baseline days. Σdi = total facility visits 
summed for all i baseline days. The formula for the ad-
justed expected value was e0 = d0 × Σni/Σdi, which differed 
considerably from the mean of the ni if d0 was high or low. 
Fewer visits for a given syndrome were thus expected on a 
day when the facility had fewer total visits. The estimated 
adjusted SD, s0, was taken as the mean absolute value of 
(ni – di × Σni/Σdi) over i baseline days; that is, s0 = Σ (abs
(ni – di × Σni/Σdi))/i. The test statistic adjusted for total vis-
its was (n0 – e0)/s0, analogous to the C2 statistic (n0 – μ)/
st, where μ and st are the mean and SD of ni, the counts 
on baseline days. In the discussion below, we refer to this 
adjustment as the rate algorithm.

The fourth modifi cation tested was increased minimum 
value for SD. We studied minimum values of 0.2 and 1.0.

To test these modifi cations, 2 datasets were used: re-
cords of Department of Defense (DoD) facility fi nal diag-
noses for September 2004–November 2007 and records 
of hospital emergency department (ED) chief complaints 
for March 2006–November 2007. The DoD data consisted 
primarily of data from outpatient clinics; however, ≈15% 
of the visits in this evaluation were from patients seen in 
emergency facilities and cannot currently be differenti-
ated in the BioSense System. We studied the 11 syndrome 
groups designed to be indicative of infections resulting 
from exposure to pathogens plausibly used in a bioterrorist 
attack (4). The DoD data consisted of daily counts of pa-
tient visits with International Classifi cation of Diseases, 9th 
Revision (ICD-9)–coded diagnoses categorized into the 11 
syndrome groups. The hospital ED data consisted of free-
text chief complaints, which were fi rst parsed for a speci-
fi ed set of keywords, abbreviations, and misspellings and 
then categorized into 10 of the syndrome groups (1 syn-
drome, specifi c infection, was used for diagnosis but not for 
chief complaint data). Some ICD-9 codes and chief com-
plaints may be included in >2 syndromes. However, counts 
of different syndromes were analyzed separately, not added 
together, and therefore are not double-counted in the analy-
ses. For both datasets, we analyzed counts aggregated by 
facility. We included facility-syndrome combinations that 
had mean counts >0.5 over all facility–syndrome days in 
the study period. Many DoD clinics are closed on holidays. 
Therefore, for the DoD data, 11 days (days on which fed-
eral holidays are observed and the day after Thanksgiving) 
were recoded as weekend days for purposes of stratifi ed 
algorithm calculations (5). Because hospital EDs typically 
are open on these holidays, no recoding for holidays was 
performed for this dataset.

The mean count for each facility syndrome was calcu-
lated and categorized as follows: 0.5 to <2, 2 to <4, 4 to <6, 
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6 to <8, 8 to <10, 10 to <20, 20 to <40, and >40. Empirical 
distributions of the test statistic (e.g., number of SDs by 
which the observed count exceeds the expected value) were 
conducted separately for each dataset, algorithm, and mean 
count category; the 99th percentile value for each of these 
distributions was used as the cutoff value to defi ne an alert 
rate of 1%. For example, for the standard C2 algorithm in 
DoD data with mean count 4 to <6, a cutoff value of 3.9 
was used because 1% of the facility-syndrome days had a 
test statistic >3.9. Because no attempt was made to fi nd and 
exclude real outbreaks from the data, these cutoff values 
defi ne an alert rate rather than a false alert rate, the latter 
being equivalent to 1-specifi city (12).

At a constant alert rate of 1% for all methods, the sen-
sitivity for detecting additional counts was calculated by 
performing the following steps: 1) running the algorithm 
to determine expected values and SDs for each facility-
syndrome-day; 2) fi nding the 99th percentile cutoff value 
for the test statistic for each dataset-algorithm-mean count 
category as explained above; 3) for each facility-syndrome 
day, determining whether the observed count plus addi-
tional counts is greater than or equal to the threshold value 
(threshold value = expected value + SD × 99th percentile 
cutoff value); and 4) calculating sensitivity as the per-
centage of days on which the additional counts would ex-
ceed the threshold value and therefore be detected. Using 
this method, a single computer run can calculate sensitivity 
for detecting single-day additional counts on all days in the 
dataset; if the additional counts are spread over multiple 
days, separate computer runs would be needed (7).

Results
The DoD diagnosis data contained 1,939,993 facility–

syndrome days from 308 facilities in 48 states with an over-
all mean of 7.7 counts per facility per day; of the 11 syn-
dromes, respiratory visits comprised the highest percentage 

(16% of total facility–syndrome days) and had the highest 
mean count (26.0 visits per facility per day) (Table 1). The 
hospital ED data contained 768,195 facility–syndrome days 
from 340 facilities in 21 states and had an overall mean of 
7.8 counts per facility per day; no visits for lymphadenitis 
and severe injury and death were included because no facil-
ities had a mean count >0.5 per day for these syndromes.

The DoD data had a strong day-of-week effect; 16%–
21% of total weekly visits occurred per day on weekdays, 
and only 3%–4% of visits occurred per day on weekend 
days and holidays (Figure 1). The hospital ED data had a 
minimal day-of-week effect: 14%–16% of visits occurred 
per day on weekdays, and 14%–15% of visits occurred per 
day on weekend days.

The accuracy of expected value calculation was evalu-
ated by using mean absolute residuals. For lower residuals, 
expected values are closer to observed values than they are 
for higher residuals. Similarly, the expected value calcula-
tion is more accurate for lower residuals than for higher 
residuals. For the DoD data, lower residuals were seen with 
stratifi cation (W2) and the rate algorithm: mean residual 
4.2 for unstratifi ed count algorithm versus 2.2 for stratifi ed 
rate algorithm (Table 2). For the hospital ED data, residu-
als were lower for the rate algorithm, and stratifi cation had 
a minimal effect. Varying the baseline duration and mini-
mum SD had no effect on the accuracy of expected value 
calculation (data not shown).

The effect of modifi cations of the initial algorithm on 
the sensitivity for detecting additional counts was exam-
ined; each modifi cation was added consecutively (Table 
3). For the DoD data, sensitivity was 40.6% for the initial 
algorithm and increased to 43.9% when the rate method 
was used; 70.8% when the minimum SD was increased to 
1.0; 79.4% when the baseline duration was increased to 28 
days; and 82.0% when a stratifi ed baseline was used. Com-
paring the initial algoithm to the best algorithm showed a 
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Table 1. Distribution of hospital emergency department visits and mean count per day, by syndrome and dataset, for selected 
BioSense data used in algorithm modification study* 

Department of Defense clinic diagnosis Hospital emergency department chief complaint 
Syndrome Mean count/d % Facility–syndrome days Mean count/d % Facility–syndrome days
Botulism-like 2.5 3.8 0.9 1.8
Fever 4.4 10.1 6.3 14.3
Gastrointestinal 8.9 13.7 14.5 14.7
Hemorrhagic 2.2 5.7 2.6 13.6
Localized cutaneous lesion 3.0 10.8 2.6 13.2
Lymphadenitits 1.1 4.8 NA 0†
Neurologic 3.6 10.6 5.2 14.4
Rash 4.3 11.2 2.2 13.1
Respiratory 26.0 16.0 20.0 14.7
Severe injury and death 2.2 2.6 NA 0†
Specific infection 3.2 10.7 NA‡ 0‡
All 7.7 100 7.8 100
*NA, not applicable. 
†Facilities were not included because none had mean counts >0.5 for syndromes. 
‡Chief complaint data are not assigned to this syndrome. 
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41.4% increase in sensitivity. For the hospital ED data, sen-
sitivity was 40.2% for the initial algorithm and increased 
to 64.8% for the best method (minimum SD = 1, 28-day 
baseline, rate method, unstratifi ed baseline); however, 
when the stratifi ed baseline was used, sensitivity decreased 
to 62.1%; the initial algorithm compared with the best algo-
rithm showed a 24.6% increase in sensitivity. When these 
sensitivity calculations were stratifi ed by mean count for 
each facility-syndrome (data not shown), we found that the 
modifi cations increased sensitivity in all strata of the DoD 
data; for the hospital ED data, the rate method reduced sen-
sitivity by 1.0% in the 8 to <10 count category and by 0.5% 
in the 10 to <20 count category, but increased sensitivity in 
other categories and overall.

When we limited analysis to ED data with a mean 
count of 4 to <6 per day and explored sensitivity for de-
tecting varying numbers of additional counts (Figure 2), 
we found, as expected, that as the number of additional 
counts increased, sensitivity increased. The difference be-
tween the initial and best algorithms was highest when 
sensitivity was ≈50% for the initial algorithm. That is, for 
10 additional counts, sensitivity was 49.8% for the initial 
algorithm and 85.3% for the best algorithm, an improve-
ment of 35.5%. However, if the initial C2 algorithm had 
either low or high sensitivity, the modifi cations had little 
effect.

As an example, we analyzed fever syndrome data from 
1 ED. The mean count was 4.9 per day, and the 99th per-
centile threshold values were 3.86 SDs for the initial and 
3.55 for the best algorithm. Over 632 days, the sensitivity 
for detecting 8 additional counts was 47.2% for the initial 
and 70.9% for the best algorithm (23.7% difference). Data 
for a 2-month period showed that the calculated SD (Fig-
ure 3, panel A) and the threshold value (i.e., count needed 
to trigger an alert; Figure 3, panel B) varied substantially 
for the initial algorithm but were comparatively stable for 
the best algorithm. During the 2-month period, 8 additional 
counts would be detected by initial and best algorithms on 
30 days, by only the initial algorithm on 2 days, and by only 
the best algorithm on 19 days; neither algorithm detected 
the additional counts on 10 days (Figure 3, panel C).

Discussion
Our results demonstrate that simple modifi cations of 

the widely used C2 algorithm can substantially improve the 
ability to accurately recognize 1-day increases in disease 
syndrome activity. Depending on the dataset, mean count 
in the data, and the number of additional counts added, the 
enhanced methods may increase sensitivity by 20%–40%. 
These improvements were achieved without an increase in 
the alert rate, which was held constant at 1% for all meth-
ods. Although we chose a 1% alert rate for testing purpos-
es, in practice, it is useful to vary the alert rate to fi t the cir-
cumstances, and the BioSense application enables the alert 
rate to be varied between 0.1% and 2%. Regardless of the 
alert rate used, the modifi ed methods have higher sensitiv-
ity. For the DoD and hospital ED datasets, sensitivity was 
improved by using a higher minimum SD of 1.0, a longer 
baseline duration of 28 days, and adjusting for total visits. 
Stratifying baseline days into weekdays versus weekends/
holidays increased sensitivity in the DoD data, which has 
a strong day-of-week effect, but modestly decreased sen-
sitivity in the hospital ED data, which does not have such 
an effect. Thus, the best analytic methods depend on data-
set characteristics, especially the day-of-week effect, and 
could be varied by manual or automated selection. These 
fi ndings can be used to improve both early event detection 
and situation awareness because accurate recognition of 
unusually high counts is needed for both uses.

These modifi cations were apparently effective for the 
following reasons. Accounting for total visits to the facility 
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Figure 1. Distribution of syndrome counts, by day of week and data 
source, for selected BioSense data used in algorithm modifi cation 
study. Black bars show Department of Defense data, and white 
bars show hospital emergency department data.

Table 2. Mean absolute residual, by method and dataset, for selected BioSense data used in algorithm modification study* 
Mean absolute residual 

Department of Defense  Hospital emergency department  Stratification of baseline by 
weekday vs. weekend Count Rate Count Rate
Unstratified 4.2 2.4 2.2 2.0
Stratified 2.4 2.2 2.3 2.0
*The count method uses only numerator data; the rate method uses numerator and denominator data. Because varying the baseline duration did not 
affect residuals (data not shown), all calculations shown here use a baseline duration of 7 days. 
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(i.e., rate method) produces a more accurate expected value 
and lower residuals (Table 2). Although number of total 
visits is not the ideal denominator, in general it is better than 
no denominator at all. An advantage of the rate method is 
that calculations may be made when only partial data for a 
given day are available. However, adjusting for total visits 
may reduce sensitivity slightly in some subgroups, as we 
found for the hospital ED data when the mean count was 
8 to <20. Stratifi cation by weekday versus weekend day 
improves expected value calculations when a substantial 
day-of-week effect exists, such as in the DoD data. When 
such an effect is not present, stratifi cation causes days fur-
ther from the index day to be used in the baseline period, 
therefore producing slightly less accurate expected values. 
Longer baseline durations have no effect on the accuracy of 
expected value calculation and improve sensitivity by pro-
ducing more accurate and stable SD values. Using a higher 
minimum SD avoids nuisance alerts that may be prompted 
by small fl uctuations in the daily visit count. This method 
also changes the distribution of test statistic values, which 
results in a lower 99th percentile cutoff value, which in-
creases sensitivity for detecting moderate-to-high numbers 
of added counts. Using a higher minimum SD is benefi cial 
if disease indicators with low and high counts are analyzed; 
an alternate approach is to use different methods for low- 
versus high-count data.

The issues focused on by our suggested modifi ca-
tions may alternately be addressed by various sophisticated 
mathematical modeling approaches. However, health de-
partments, which are generally limited in resources and in 
analysis expertise, may resist use of decision-support meth-
ods that are expensive, diffi cult to implement, or not trans-
parent to human data monitors. For example, sophisticated 
Serfl ing-type regression models have long been used by 
CDC for tracking the progress of infl uenza season (13,14) 
and have been used to analyze selected data in the Bio-
Sense system. However, these models have both strengths 

and weaknesses and have not been widely embraced for 
daily disease surveillance. Even if the expertise and hard-
ware capability for applying them were made available to 
local health departments, many time series are unsuitable 
for this approach. We present simple and easily understood 
and implemented enhancements to C2 to extend its appli-
cability and improve its performance. These enhancements 
may be applicable to other control chart-based algorithms 
as well.

Automated surveillance systems based on chief com-
plaints and diagnoses have a number of uses: providing as-
sistance in data collection; monitoring seasonal infl uenza 
(15); monitoring total ED visits during a crisis; and moni-
toring simple surrogates of infectious diseases, injuries, and 
chronic diseases during large outbreaks or disasters (16). 
The utility of these systems has not been demonstrated for 
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Table 3. Sensitivity for detection of additional counts, by method and dataset, for selected BioSense data used in algorithm 
modification study* 

Sensitivity  
Department of Defense Hospital emergency department 

Minimum SD 
Stratified
baseline

Baseline
duration, d Count Rate Count Rate

0.2 No 7 40.6† 43.9 40.2† 39.1
1.0 No 7 52.3 70.8 50.4 53.6
1.0 No 14 58.6 76.8 58.7 60.9
1.0 No 28 62.0 79.4 62.8 64.8‡
1.0 Yes 7 64.9 75.7 50.2 53.8
1.0 Yes 14 75.1 80.4 57.6 60.1
1.0 Yes 28 77.0 82.0‡ 60.5 62.1
*All facility–syndrome days were included in calculations. The number of additional counts varied according to categories of average count for each 
facility–syndrome (0.5–<2, 2–<4, 4–<6, 6–<8, 8–<10, 10–<20, 20–<40, and >40) to produce 40% sensitivity for the initial method. For the Department of 
Defense, the additional counts were 5.0, 9.1, 11.7, 13.6, 16.0, 20.9, 30.4, and 40.0 for the average count categories, respectively. For the hospital 
emergency departments, the additional counts were 4.3, 6.3, 8.2, 9.5, 10.4, 12.9, 18.7, and 28.2, respectively. 
†Initial method. 
‡Best method for the dataset. 
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Figure 2. Sensitivity of detecting various numbers of additional 
counts, by using initial versus best algorithms for hospital emergency 
department chief complaint data, for selected BioSense data. Red 
line shows the initial algorithm (minimum SD = 0.2, 7-day baseline, 
count method, unstratifi ed baseline), and black line shows the 
best algorithm (minimum SD = 1.0, 28-day baseline, rate method, 
unstratifi ed baseline).
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monitoring small- or intermediate-sized outbreaks or ill-
nesses defi ned primarily by laboratory testing. Even when 

using these suggested modifi cations, sensitivity for detect-
ing additional counts at the facility level remains modest. 
However, the utility of automated biosurveillance will be 
expanded with the availability of better population cover-
age and more specifi c data, the use of multiple data types in 
combination, and improved detection algorithms, such as 
those proposed here.

The limitations of this study include using only data 
with a mean count >0.5 per day; analyses of sparser data 
might show different results. We studied only facility-level 
aggregation of data, selected patient types (e.g., hospital in-
patients were not studied), selected data types (e.g., ED di-
agnoses were not studied), and broadly defi ned syndromes 
(the more granular subsyndromes, which are likely to yield 
lower counts, were not studied). Although we evaluated 
only a simple time-series detection method, optimizing 
performance of simple methods is useful before they can be 
meaningfully compared with more sophisticated methods, 
such as regression. Also, we studied effects of additional 
counts on single days rather than multiday outbreak effects; 
however, because the C2 algorithm considers data from 
only 1 day at a time, this is a reasonable initial approach. 
These results must be confi rmed by trials of multiday sig-
nal injection and performance evaluated for multiple sub-
groups (e.g., syndrome, day of week, season). We adopted 
the approach of evaluating sensitivity at a fi xed 1% alert 
rate defi ned empirically for each algorithm and dataset, as 
used by Jackson et al. (12). Our approach is in accord with 
a recent review that recommended basing alert thresholds 
on empirical data rather than on classical statistical theory 
(17). A major strength of the study is that BioSense is a 
national system that  provided access to 2 major datasets 
with differing characteristics and to data from hundreds of 
facilities in many states. The length, geographic spread, 
and syndrome variation of the study datasets lend weight 
to the results.

The fi eld of electronic biosurveillance is in its infancy 
and is rapidly changing. Early work focused on attempts to 
detect outbreaks (early event detection) by using broadly 
defi ned syndromes (e.g., respiratory syndrome) based on 
chief complaints and diagnoses. Emphasis has recently 
shifted to monitoring for ongoing outbreaks (situational 
awareness) and for specifi c disease indicators (e.g., cough, 
dyspnea) called subsyndromes. The fi eld is now beginning 
to develop methods for case-based surveillance (i.e., auto-
mated application of a formal case defi nition using com-
puterized data) (18). Each data type and disease indicator 
may have unique characteristics that require modifi cations 
of standard data analysis methods. However, because the 
adaptation of time-series methods to recognize outbreaks 
will be an ongoing need, the enhanced methods identifi ed 
by this study are likely to have lasting usefulness.
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Figure 3. Comparison of initial versus best algorithms for analysis 
of fever syndrome data at an example emergency department, 
October–November 2006. A) SD comparison. Count, fever syn-
drome counts; SD (initial), SD by using initial algorithm (minimum 
SD = 0.2, 7-day baseline, count method, unstratifi ed baseline); 
SD (best), SD by using best algorithm (minimum SD = 1.0, 28-day 
baseline, rate method, unstratifi ed baseline). B) Count threshold 
comparison. Count, fever syndrome counts; threshold 1, minimum 
count needed to trigger an alert by using initial method; threshold 2, 
minimum count needed to trigger an alert by using best method (for 
the best algorithm, which accounts for rate, 8 counts were added to 
total visits for calculating the threshold). C) Detection of 8 additional 
counts. Count, daily fever syndrome counts; count + 8, daily count 
plus 8 counts; both methods, 30 days with the additional counts 
detected by both the initial and best methods; initial only, 2 days 
with the additional counts detected by using initial method only; 
and best only, 19 days with additional counts detected by using 
best method only.
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