Hence, immunocompromised persons, children, and others involved in the breeding of exotic birds should avoid contact with birds with clinically suspected *M. avium* subsp. *hominissuis*.

Acknowledgments

We thank Eva Slezakova for technical assistance. We also thank Ludmila Faldikova and Neysan Donnelly for their critical grammatical corrections.

This study was supported by grant nos. MZE0002716201 and NPV 1B53009 from the Ministry of Agriculture of the Czech Republic and PathogenCombat (no. FOOD-CT-2005-007081, Brussels, EC).

Edmealem Jembere Shitaye, Veronika Grymova, Martin Grym, Roman Halouzka, Alica Horvathova, Monika Moravkova, Vladimir Beran, Jana Svobodova, Lenka Dvorska-Bartosova, and Ivo Pavlik

Author affiliations: Veterinary Research Institute, Brno, Czech Republic (E.J. Shitaye, A. Horvathova, M. Moravkova, V. Beran, L. Dvorska-Bartosova, I. Pavlik); University of Veterinary and Pharmaceutical Sciences, Brno (E.J. Shitaye, R. Halouzka); Veterinary Clinic Avetum, Brno (V. Grymova, M. Grym); and Regional Institute of Public Health, Brno (J. Svobodova)

DOI: 10.3201/eid1504.081003

References


Address for correspondence: Ivo Pavlik, Veterinary Research Institute, Hradcova 70, 621 00 Brno, Czech Republic; email: pavlik@vri.cz

Mycobacterium colombiense and Pseudotuberculous Lymphadenopathy

To the Editor: Mycobacterium colombiense is a new species belonging to the *M. avium* complex (MAC). It is characterized by a unique internal transcribed spacer sequence and causing respiratory tract and disseminated infection in HIV-infected patients in Colombia (1). We report clinical and histologic features of lymphadenopathy resulting from *M. colombiense* infection.

A 25-month-old girl with an unremarkable medical history was hospitalized in the pediatric department of Timone Hospital, Marseille, France, due to development of swelling in a right subcuticular lymph node over a 1-month period. A 5-day course of oxacillin, which was administered orally, had been unsuccessful in alleviating the symptoms. The patient’s general condition was excellent, and results of a physical examination were normal, with the exception of a 2-cm hard, immobile, yet painless, noninflammatory, enlarged lymph node. Due to the presence of the enlarged lymph node, a chest radiograph was performed, and results were normal. A hemogram indicated a hemoglobin concentration of 113 g/L, a leukocyte count 8.3 × 10^9/L consisting of 31% polynuclear neutrophils and 62% lymphocytes, and a normal blood smear. A platelet count indicated a concentration of 389 × 10^9/L, and the serum lactic dehydrogenase level was 440 UI/L. In addition, no biologic inflammatory syndrome was observed based on the concentration of C-reactive protein (<1 mg/L) and an erythrocyte sedimentation rate of 18 mm/h.

Fine-needle aspiration of the lymph node showed necrosis and mature, activated lymphocytes. These results suggested a possible diagnosis of lymphoma, and a surgical excision...
biopsy was subsequently performed. Direct microscopic examinations were carried out after results obtained by Gram and Ziehl-Neelsen staining showed that the lymph node was negative for acid-fast bacilli. Histopathologic analysis indicated epithelioid cell granulomas containing giant cells and caseous necrosis without altered leukocytes, all of which are compatible with tuberculosis. Culturing of the biopsy specimen in BACTEC broth (Becton Dickinson, Courtabeuf, France) at 5% CO₂ at 37°C yielded acid-fast bacilli after a 7-day incubation period.

After inactivating the cells and extracting the DNA by using a previously described method, we identified the isolate by PCR sequencing of the rpoB gene (2) and its demonstrated 100% sequence similarity to M. colombiense CIP108962T (1,2). Accordingly, the isolate exhibited positive urease activity, a distinctive characteristic that differentiates M. colombiense from other MAC species (1,2).

Recently, M. colombiense was shown to be responsible for an enlarged lymph node in 1 child from Spain who did not show any evidence of HIV infection (3). In that patient, histopathologic examination showed granulomatous adenitis with necrosis. We report that M. colombiense–infected lymph nodes also yield clinical and histopathologic features evocative of tuberculosis. Indeed, MAC organisms remain the most prevalent agents demonstrated in diseased lymph nodes in children (4).

Because modern molecular tools used for the description of emerging MAC species have not been available in most previous reports, the real prevalence of M. colombiense may have been underestimated. In children, M. hemophilum (5), M. avium subsp. avium (6), M. avium subsp. hominisuis (7), M. lentiflavum (8), M. bohemicum (9), and M. simiae (10) have been demonstrated to be responsible for enlarged cervical lymph nodes (online Appendix Table, available from www.cdc.gov/EID/content/15/4/619-appT.htm).

Because management and antimicrobial drug treatment of each of these different infections vary in terms of indication, choice of drugs, and duration, the accurate and rapid identification of the causative Mycobacterium species is absolutely necessary. This identification should use PCR sequencing of selected universal molecular targets, including the 16S rRNA and rpoB genes (2), as illustrated herein.

This work was supported by Unité Mixte de Recherche 6236, Marseille, France.

Katarina Vuorenmaa, Iskandar Ben Salah, Vincent Barlogis, Hervé Chambost, and Michel Drancourt

Author affiliations: Université de la Méditerranée, Marseille, France (K. Vuorenmaa, I. Ben Salah, M. Drancourt); Assistance Publique des Hôpitaux de Marseille–Fédération de Microbiologie Clinique Hôpital la Timone, Marseille (K. Vuorenmaa, I. Ben Salah, M. Drancourt); and Hôpital d’Enfants la Timone, Marseille (V. Barlogis, H. Chambost)

DOI: 10.3201/eid1504.081436

References


Address for correspondence: Michel Drancourt, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, 27, Blvd Jean Moulin, Marseille, CEDEX 5, France; email: michel.drancourt@univmed.fr

LETTERS
<table>
<thead>
<tr>
<th>Mycobacterium spp.</th>
<th>No. patients</th>
<th>Treatment</th>
<th>Outcome</th>
<th>Clinical features</th>
<th>Microbiologic tests</th>
<th>Histopathology</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct examination†</td>
<td>Culture</td>
<td>Molecular identification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±</td>
<td>+</td>
<td>IS6110</td>
</tr>
<tr>
<td>M. avium</td>
<td>183</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>+</td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>M. avium subsp. hominissuis</td>
<td>34</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>+</td>
<td></td>
<td>IS1245</td>
</tr>
<tr>
<td>M. haemophilum</td>
<td>39</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>+</td>
<td>+</td>
<td>16S–23S rDNA</td>
</tr>
<tr>
<td>M. lentiflavum</td>
<td>3</td>
<td>SE</td>
<td>Cured</td>
<td></td>
<td>±</td>
<td>+</td>
<td>16S rRNA</td>
</tr>
<tr>
<td>M. bohemicum</td>
<td>4</td>
<td>SE/C, R</td>
<td>Cured</td>
<td></td>
<td>±</td>
<td>+</td>
<td>16S rRNA</td>
</tr>
<tr>
<td>M. simiae</td>
<td>1</td>
<td>SE</td>
<td>Cured</td>
<td></td>
<td>+</td>
<td>+</td>
<td>HPLC</td>
</tr>
<tr>
<td>M. colombiense</td>
<td>1</td>
<td>SE</td>
<td>Cured</td>
<td></td>
<td>+</td>
<td>+</td>
<td>16S rRNA</td>
</tr>
</tbody>
</table>

*IS, insertion sequence; NR, not reported; SE, surgical excision; C, clarithromycin; R, rifampin; NR, not reported; HPLC, high-performance liquid chromatography.
†Zielhl-Nelsen staining.